These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


439 related items for PubMed ID: 20052087

  • 1. Symmetry breaking induced optical properties of gold open shell nanostructures.
    Ye J, Lagae L, Maes G, Borghs G, Van Dorpe P.
    Opt Express; 2009 Dec 21; 17(26):23765-71. PubMed ID: 20052087
    [Abstract] [Full Text] [Related]

  • 2. Angle- and energy-resolved plasmon coupling in gold nanorod dimers.
    Shao L, Woo KC, Chen H, Jin Z, Wang J, Lin HQ.
    ACS Nano; 2010 Jun 22; 4(6):3053-62. PubMed ID: 20565141
    [Abstract] [Full Text] [Related]

  • 3. Interaction and spectral gaps of surface plasmon modes in gold nano-structures.
    Kolomenskii A, Peng S, Hembd J, Kolomenski A, Noel J, Strohaber J, Teizer W, Schuessler H.
    Opt Express; 2011 Mar 28; 19(7):6587-98. PubMed ID: 21451686
    [Abstract] [Full Text] [Related]

  • 4. Plasmonic percolation: plasmon-manifested dielectric-to-metal transition.
    Chen H, Wang F, Li K, Woo KC, Wang J, Li Q, Sun LD, Zhang X, Lin HQ, Yan CH.
    ACS Nano; 2012 Aug 28; 6(8):7162-71. PubMed ID: 22757659
    [Abstract] [Full Text] [Related]

  • 5. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK, Huang X, El-Sayed IH, El-Sayed MA.
    Acc Chem Res; 2008 Dec 28; 41(12):1578-86. PubMed ID: 18447366
    [Abstract] [Full Text] [Related]

  • 6. Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions.
    Halté V, Benabbas A, Bigot JY.
    Opt Express; 2008 Jul 21; 16(15):11611-7. PubMed ID: 18648482
    [Abstract] [Full Text] [Related]

  • 7. Light coupling and enhanced backscattering in layered plasmonic nanocomposites.
    Deparis O, Beresna M, Vandenbem C, Kazansky PG.
    Opt Express; 2011 Jan 17; 19(2):1335-43. PubMed ID: 21263674
    [Abstract] [Full Text] [Related]

  • 8. Enhanced surface plasmon resonance based on the silver nanoshells connected by the nanobars.
    Chau YF, Lin YJ, Tsai DP.
    Opt Express; 2010 Feb 15; 18(4):3510-8. PubMed ID: 20389360
    [Abstract] [Full Text] [Related]

  • 9. Gold nanoring trimers: a versatile structure for infrared sensing.
    Teo SL, Lin VK, Marty R, Large N, Llado EA, Arbouet A, Girard C, Aizpurua J, Tripathy S, Mlayah A.
    Opt Express; 2010 Oct 11; 18(21):22271-82. PubMed ID: 20941128
    [Abstract] [Full Text] [Related]

  • 10. Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding.
    Grillet N, Manchon D, Bertorelle F, Bonnet C, Broyer M, Cottancin E, Lermé J, Hillenkamp M, Pellarin M.
    ACS Nano; 2011 Dec 27; 5(12):9450-62. PubMed ID: 22087471
    [Abstract] [Full Text] [Related]

  • 11. Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates.
    Shegai T, Brian B, Miljković VD, Käll M.
    ACS Nano; 2011 Mar 22; 5(3):2036-41. PubMed ID: 21323329
    [Abstract] [Full Text] [Related]

  • 12. Impact of apexes on the resonance shift in double hole nanocavities.
    Iyer S, Popov S, Friberg AT.
    Opt Express; 2010 Jan 04; 18(1):193-203. PubMed ID: 20173839
    [Abstract] [Full Text] [Related]

  • 13. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD, Lipert RJ, Porter MD.
    J Phys Chem B; 2006 Sep 07; 110(35):17444-51. PubMed ID: 16942083
    [Abstract] [Full Text] [Related]

  • 14. Colloidal gold and silver triangular nanoprisms.
    Millstone JE, Hurst SJ, Métraux GS, Cutler JI, Mirkin CA.
    Small; 2009 Mar 07; 5(6):646-64. PubMed ID: 19306458
    [Abstract] [Full Text] [Related]

  • 15. Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering.
    Chen T, Du C, Tan LH, Shen Z, Chen H.
    Nanoscale; 2011 Apr 07; 3(4):1575-81. PubMed ID: 21286607
    [Abstract] [Full Text] [Related]

  • 16. Collective electric and magnetic plasmonic resonances in spherical nanoclusters.
    Vallecchi A, Albani M, Capolino F.
    Opt Express; 2011 Jan 31; 19(3):2754-72. PubMed ID: 21369097
    [Abstract] [Full Text] [Related]

  • 17. Optical properties of Au/Ag core/shell nanoshuttles.
    Li M, Zhang ZS, Zhang X, Li KY, Yu XF.
    Opt Express; 2008 Sep 01; 16(18):14288-93. PubMed ID: 18773039
    [Abstract] [Full Text] [Related]

  • 18. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK, Eustis S, El-Sayed MA.
    J Phys Chem B; 2006 Sep 21; 110(37):18243-53. PubMed ID: 16970442
    [Abstract] [Full Text] [Related]

  • 19. How gold nanoparticles have stayed in the light: the 3M's principle.
    Odom TW, Nehl CL.
    ACS Nano; 2008 Apr 21; 2(4):612-6. PubMed ID: 19206589
    [Abstract] [Full Text] [Related]

  • 20. Plasmonic resonance of whispering gallery modes in an Au cylinder.
    Zhang X, Ma Z, Yu H, Guo X, Ma Y, Tong L.
    Opt Express; 2011 Feb 28; 19(5):3902-7. PubMed ID: 21369215
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.