These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


116 related items for PubMed ID: 20053369

  • 1. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: protective role of arjunolic acid.
    Manna P, Ghosh J, Das J, Sil PC.
    Toxicol Appl Pharmacol; 2010 Apr 15; 244(2):114-29. PubMed ID: 20053369
    [Abstract] [Full Text] [Related]

  • 2. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways.
    Manna P, Sinha M, Sil PC.
    Toxicology; 2009 Mar 04; 257(1-2):53-63. PubMed ID: 19133311
    [Abstract] [Full Text] [Related]

  • 3. Prophylactic role of arjunolic acid in response to streptozotocin mediated diabetic renal injury: activation of polyol pathway and oxidative stress responsive signaling cascades.
    Manna P, Sinha M, Sil PC.
    Chem Biol Interact; 2009 Oct 30; 181(3):297-308. PubMed ID: 19682444
    [Abstract] [Full Text] [Related]

  • 4. Impaired redox signaling and mitochondrial uncoupling contributes vascular inflammation and cardiac dysfunction in type 1 diabetes: Protective role of arjunolic acid.
    Manna P, Sil PC.
    Biochimie; 2012 Mar 30; 94(3):786-97. PubMed ID: 22155371
    [Abstract] [Full Text] [Related]

  • 5. Acetaminophen induced renal injury via oxidative stress and TNF-alpha production: therapeutic potential of arjunolic acid.
    Ghosh J, Das J, Manna P, Sil PC.
    Toxicology; 2010 Jan 31; 268(1-2):8-18. PubMed ID: 19922764
    [Abstract] [Full Text] [Related]

  • 6. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IkappaBalpha/NF-kappaB, MAPKs, and mitochondria-dependent pathways: Prophylactic role of arjunolic acid.
    Manna P, Das J, Ghosh J, Sil PC.
    Free Radic Biol Med; 2010 Jun 01; 48(11):1465-84. PubMed ID: 20188823
    [Abstract] [Full Text] [Related]

  • 7. Scoparia dulcis, a traditional antidiabetic plant, protects against streptozotocin induced oxidative stress and apoptosis in vitro and in vivo.
    Latha M, Pari L, Sitasawad S, Bhonde R.
    J Biochem Mol Toxicol; 2004 Jun 01; 18(5):261-72. PubMed ID: 15549711
    [Abstract] [Full Text] [Related]

  • 8. Occurrence of oxidative impairments, response of antioxidant defences and associated biochemical perturbations in male reproductive milieu in the Streptozotocin-diabetic rat.
    Shrilatha B, Muralidhara.
    Int J Androl; 2007 Dec 01; 30(6):508-18. PubMed ID: 17573857
    [Abstract] [Full Text] [Related]

  • 9. Protective effect of bezafibrate on streptozotocin-induced oxidative stress and toxicity in rats.
    Anwer T, Sharma M, Pillai KK, Haque SE, Alam MM, Zaman MS.
    Toxicology; 2007 Jan 05; 229(1-2):165-72. PubMed ID: 17145126
    [Abstract] [Full Text] [Related]

  • 10. Arjunolic acid: beneficial role in type 1 diabetes and its associated organ pathophysiology.
    Manna P, Sil PC.
    Free Radic Res; 2012 Jul 05; 46(7):815-30. PubMed ID: 22486656
    [Abstract] [Full Text] [Related]

  • 11. Reduction of oxidative stress by a new low-molecular-weight antioxidant improves metabolic alterations in a nonobese mouse diabetes model.
    Novelli M, D'Aleo V, Lupi R, Paolini M, Soleti A, Marchetti P, Masiello P.
    Pancreas; 2007 Nov 05; 35(4):e10-7. PubMed ID: 18090226
    [Abstract] [Full Text] [Related]

  • 12. Diltiazem attenuates oxidative stress in diabetic rats.
    Anjaneyulu M, Chopra K.
    Ren Fail; 2005 Nov 05; 27(3):335-44. PubMed ID: 15957552
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Cytoprotective effect of arjunolic acid in response to sodium fluoride mediated oxidative stress and cell death via necrotic pathway.
    Ghosh J, Das J, Manna P, Sil PC.
    Toxicol In Vitro; 2008 Dec 05; 22(8):1918-26. PubMed ID: 18845235
    [Abstract] [Full Text] [Related]

  • 15. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway.
    Ghosh J, Das J, Manna P, Sil PC.
    Toxicol Appl Pharmacol; 2009 Oct 01; 240(1):73-87. PubMed ID: 19616567
    [Abstract] [Full Text] [Related]

  • 16. Arsenic-induced oxidative myocardial injury: protective role of arjunolic acid.
    Manna P, Sinha M, Sil PC.
    Arch Toxicol; 2008 Mar 01; 82(3):137-49. PubMed ID: 18197399
    [Abstract] [Full Text] [Related]

  • 17. Taurine protects rat testes against NaAsO(2)-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways.
    Das J, Ghosh J, Manna P, Sinha M, Sil PC.
    Toxicol Lett; 2009 Jun 22; 187(3):201-10. PubMed ID: 19429265
    [Abstract] [Full Text] [Related]

  • 18. Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats.
    Gupta S, Kataria M, Gupta PK, Murganandan S, Yashroy RC.
    J Ethnopharmacol; 2004 Feb 22; 90(2-3):185-9. PubMed ID: 15013179
    [Abstract] [Full Text] [Related]

  • 19. Beneficial effects of Chinese prescription Kangen-karyu on diabetes associated with hyperlipidemia, advanced glycation endproducts, and oxidative stress in streptozotocin-induced diabetic rats.
    Kim HY, Okamoto T, Yokozawa T.
    J Ethnopharmacol; 2009 Jul 15; 124(2):263-9. PubMed ID: 19397970
    [Abstract] [Full Text] [Related]

  • 20. Tocotrienol attenuates oxidative-nitrosative stress and inflammatory cascade in experimental model of diabetic neuropathy.
    Kuhad A, Chopra K.
    Neuropharmacology; 2009 Sep 15; 57(4):456-62. PubMed ID: 19555701
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.