These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Consumption of hydrogen ions in rapid-equilibrium enzyme kinetics. Alberty RA. J Phys Chem B; 2010 Dec 16; 114(49):16083-6. PubMed ID: 20550143 [Abstract] [Full Text] [Related]
5. Two different ways that hydrogen ions are involved in the thermodynamics and rapid-equilibrium kinetics of the enzymatic catalysis of S=P and S+H2O=P. Alberty RA. Biophys Chem; 2007 Jul 16; 128(2-3):204-9. PubMed ID: 17490804 [Abstract] [Full Text] [Related]
6. Effects of pH in rapid-equilibrium enzyme kinetics. Alberty RA. J Phys Chem B; 2007 Dec 20; 111(50):14064-8. PubMed ID: 18027926 [Abstract] [Full Text] [Related]
7. Temperature and pH dependence of enzyme-catalyzed hydrolysis of trans-methylstyrene oxide. A unifying kinetic model for observed hysteresis, cooperativity, and regioselectivity. Lindberg D, de la Fuente Revenga M, Widersten M. Biochemistry; 2010 Mar 16; 49(10):2297-304. PubMed ID: 20146441 [Abstract] [Full Text] [Related]
8. Determination of rapid-equilibrium kinetic parameters of ordered and random enzyme-catalyzed reaction A+B=P+Q. Alberty RA. J Phys Chem B; 2009 Jul 23; 113(29):10043-8. PubMed ID: 19558174 [Abstract] [Full Text] [Related]
19. A potential role for isothermal calorimetry in studies of the effects of thermodynamic non-ideality in enzyme-catalyzed reactions. Lonhienne TG, Winzor DJ. J Mol Recognit; 2004 Dec 16; 17(5):351-61. PubMed ID: 15362092 [Abstract] [Full Text] [Related]