These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
277 related items for PubMed ID: 20059229
1. Comment on "Anticipating synchronization of chaotic systems with time delay and parameter mismatch" [Chaos 19, 013104 (2009)]. Zhang Y. Chaos; 2009 Dec; 19(4):048101. PubMed ID: 20059229 [Abstract] [Full Text] [Related]
2. Comment on "Synchronization of chaotic systems with delay using intermittent linear state feedback" [Chaos 18, 033122 (2008)]. Zhang Y, Wang QG. Chaos; 2008 Dec; 18(4):048101; discussion 048102. PubMed ID: 19123640 [Abstract] [Full Text] [Related]
4. Synchronization in coupled time-delayed systems with parameter mismatch and noise perturbation. Sun Y, Ruan J. Chaos; 2009 Dec; 19(4):043113. PubMed ID: 20059209 [Abstract] [Full Text] [Related]
5. Chaos control and synchronization in Bragg acousto-optic bistable systems driven by a separate chaotic system. Wang R, Gao JY. Chaos; 2005 Sep; 15(3):33110. PubMed ID: 16252984 [Abstract] [Full Text] [Related]
6. Projective-anticipating, projective, and projective-lag synchronization of time-delayed chaotic systems on random networks. Feng CF, Xu XJ, Wang SJ, Wang YH. Chaos; 2008 Jun; 18(2):023117. PubMed ID: 18601484 [Abstract] [Full Text] [Related]
9. Robust synchronization of chaotic systems subject to parameter uncertainties. Huang H, Feng G, Sun Y. Chaos; 2009 Sep; 19(3):033128. PubMed ID: 19792008 [Abstract] [Full Text] [Related]
10. Anticipating synchronization of chaotic systems with time delay and parameter mismatch. Han Q, Li C, Huang J. Chaos; 2009 Mar; 19(1):013104. PubMed ID: 19334968 [Abstract] [Full Text] [Related]
11. Theoretical and experimental studies of parameter estimation based on chaos feedback synchronization. Zhang Y, Tao C, Jiang JJ. Chaos; 2006 Dec; 16(4):043122. PubMed ID: 17199400 [Abstract] [Full Text] [Related]
12. Synchronization in networks of chaotic systems with time-delay coupling. Oguchi T, Nijmeijer H, Yamamoto T. Chaos; 2008 Sep; 18(3):037108. PubMed ID: 19045482 [Abstract] [Full Text] [Related]
13. Using synchronization of chaos to identify the dynamics of unknown systems. Sorrentino F, Ott E. Chaos; 2009 Sep; 19(3):033108. PubMed ID: 19791988 [Abstract] [Full Text] [Related]
14. A decentralized adaptive robust method for chaos control. Kobravi HR, Erfanian A. Chaos; 2009 Sep; 19(3):033111. PubMed ID: 19791991 [Abstract] [Full Text] [Related]
15. Novel synchronization of discrete-time chaotic systems using neural network observer. Naghavi SV, Safavi AA. Chaos; 2008 Sep; 18(3):033110. PubMed ID: 19045448 [Abstract] [Full Text] [Related]
16. Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking. Ge ZM, Yang CH. Chaos; 2008 Dec; 18(4):043129. PubMed ID: 19123639 [Abstract] [Full Text] [Related]
17. Extending anticipation horizon of chaos synchronization schemes with time-delay coupling. Pyragas K, Pyragienė T. Philos Trans A Math Phys Eng Sci; 2010 Jan 28; 368(1911):305-17. PubMed ID: 20008403 [Abstract] [Full Text] [Related]
18. Computer systems are dynamical systems. Mytkowicz T, Diwan A, Bradley E. Chaos; 2009 Sep 28; 19(3):033124. PubMed ID: 19792004 [Abstract] [Full Text] [Related]
19. Chaos quasisynchronization induced by impulses with parameter mismatches. Li C, Chen G, Liao X, Fan Z. Chaos; 2006 Jun 28; 16(2):023102. PubMed ID: 16822005 [Abstract] [Full Text] [Related]