These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
294 related items for PubMed ID: 20062879
21. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Chang H, Tang L, Wang Y, Jiang J, Li J. Anal Chem; 2010 Mar 15; 82(6):2341-6. PubMed ID: 20180560 [Abstract] [Full Text] [Related]
22. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering. Kim JH, Kang T, Yoo SM, Lee SY, Kim B, Choi YK. Nanotechnology; 2009 Jun 10; 20(23):235302. PubMed ID: 19448293 [Abstract] [Full Text] [Related]
23. Competitive aptasensor with gold nanoparticle dimers and magnetite nanoparticles for SERS-based determination of thrombin. Jiang N, Zhu T, Hu Y. Mikrochim Acta; 2019 Nov 06; 186(12):747. PubMed ID: 31691866 [Abstract] [Full Text] [Related]
24. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Li M, Zhang J, Suri S, Sooter LJ, Ma D, Wu N. Anal Chem; 2012 Mar 20; 84(6):2837-42. PubMed ID: 22380526 [Abstract] [Full Text] [Related]
25. Simultaneous electrochemical detection of multiple analytes based on dual signal amplification of single-walled carbon nanotubes and multi-labeled graphene sheets. Bai L, Yuan R, Chai Y, Zhuo Y, Yuan Y, Wang Y. Biomaterials; 2012 Feb 20; 33(4):1090-6. PubMed ID: 22061494 [Abstract] [Full Text] [Related]
26. Chemiluminescence DNA biosensor based on dual-amplification of thrombin and thiocyanuric acid-gold nanoparticle network. Li X, Li W, Zhang S. Analyst; 2010 Feb 20; 135(2):332-6. PubMed ID: 20098767 [Abstract] [Full Text] [Related]
27. Nanoparticle enhanced surface plasmon resonance biosensing: application of gold nanorods. Law WC, Yong KT, Baev A, Hu R, Prasad PN. Opt Express; 2009 Oct 12; 17(21):19041-6. PubMed ID: 20372639 [Abstract] [Full Text] [Related]
28. The effect of DNA aptamer configuration on the sensitivity of detection thrombin at surface by acoustic method. Hianik T, Grman I, Karpisova I. Chem Commun (Camb); 2009 Nov 07; (41):6303-5. PubMed ID: 19826702 [Abstract] [Full Text] [Related]
29. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Marinakos SM, Chen S, Chilkoti A. Anal Chem; 2007 Jul 15; 79(14):5278-83. PubMed ID: 17567106 [Abstract] [Full Text] [Related]
30. Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Du Y, Chen C, Yin J, Li B, Zhou M, Dong S, Wang E. Anal Chem; 2010 Feb 15; 82(4):1556-63. PubMed ID: 20095580 [Abstract] [Full Text] [Related]
31. Colorimetric biosensing of mercury(II) ion using unmodified gold nanoparticle probes and thrombin-binding aptamer. Wang Y, Yang F, Yang X. Biosens Bioelectron; 2010 Apr 15; 25(8):1994-8. PubMed ID: 20138750 [Abstract] [Full Text] [Related]
32. Nano-patterned SERS substrate: application for protein analysis vs. temperature. Das G, Mecarini F, Gentile F, De Angelis F, Mohan Kumar H, Candeloro P, Liberale C, Cuda G, Di Fabrizio E. Biosens Bioelectron; 2009 Feb 15; 24(6):1693-9. PubMed ID: 18976899 [Abstract] [Full Text] [Related]
33. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection. Tang L, Li S, Han F, Liu L, Xu L, Ma W, Kuang H, Li A, Wang L, Xu C. Biosens Bioelectron; 2015 Sep 15; 71():7-12. PubMed ID: 25880832 [Abstract] [Full Text] [Related]
34. Sensitive and antifouling impedimetric aptasensor for the determination of thrombin in undiluted serum sample. Qi H, Shangguan L, Li C, Li X, Gao Q, Zhang C. Biosens Bioelectron; 2013 Jan 15; 39(1):324-8. PubMed ID: 22884002 [Abstract] [Full Text] [Related]
35. Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles. Chen Q, Tang W, Wang D, Wu X, Li N, Liu F. Biosens Bioelectron; 2010 Oct 15; 26(2):575-9. PubMed ID: 20692147 [Abstract] [Full Text] [Related]
36. Bimetallic nanostructures as active Raman markers: gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Gunawidjaja R, Kharlampieva E, Choi I, Tsukruk VV. Small; 2009 Nov 15; 5(21):2460-6. PubMed ID: 19642091 [Abstract] [Full Text] [Related]
37. Nanoparticle-catalyzed reductive bleaching for fabricating turn-off and enzyme-free amplified colorimetric bioassays. Li W, Qiang W, Li J, Li H, Dong Y, Zhao Y, Xu D. Biosens Bioelectron; 2014 Jan 15; 51():219-24. PubMed ID: 23962710 [Abstract] [Full Text] [Related]
39. PolyA-tailed and fluorophore-labeled aptamer-gold nanoparticle conjugate for fluorescence turn-on bioassay using iodide-induced ligand displacement. Li W, Dong Y, Wang X, Li H, Xu D. Biosens Bioelectron; 2015 Apr 15; 66():43-9. PubMed ID: 25460880 [Abstract] [Full Text] [Related]
40. Microarray based Raman spectroscopic detection with gold nanoparticle probes. Li T, Guo L, Wang Z. Biosens Bioelectron; 2008 Feb 28; 23(7):1125-30. PubMed ID: 18068972 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]