These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


439 related items for PubMed ID: 20063887

  • 1. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts.
    Jensen MR, Salmon L, Nodet G, Blackledge M.
    J Am Chem Soc; 2010 Feb 03; 132(4):1270-2. PubMed ID: 20063887
    [Abstract] [Full Text] [Related]

  • 2. Quantitative determination of the conformational properties of partially folded and intrinsically disordered proteins using NMR dipolar couplings.
    Jensen MR, Markwick PR, Meier S, Griesinger C, Zweckstetter M, Grzesiek S, Bernadó P, Blackledge M.
    Structure; 2009 Sep 09; 17(9):1169-85. PubMed ID: 19748338
    [Abstract] [Full Text] [Related]

  • 3. Quantitative description of backbone conformational sampling of unfolded proteins at amino acid resolution from NMR residual dipolar couplings.
    Nodet G, Salmon L, Ozenne V, Meier S, Jensen MR, Blackledge M.
    J Am Chem Soc; 2009 Dec 16; 131(49):17908-18. PubMed ID: 19908838
    [Abstract] [Full Text] [Related]

  • 4. Folding of small proteins by Monte Carlo simulations with chemical shift restraints without the use of molecular fragment replacement or structural homology.
    Robustelli P, Cavalli A, Dobson CM, Vendruscolo M, Salvatella X.
    J Phys Chem B; 2009 Jun 04; 113(22):7890-6. PubMed ID: 19425536
    [Abstract] [Full Text] [Related]

  • 5. Toward direct determination of conformations of protein building units from multidimensional NMR experiments VI: chemical shift analysis of his to gain 3D structure and protonation state information.
    Hudáky P, Perczel A.
    J Comput Chem; 2005 Oct 04; 26(13):1307-17. PubMed ID: 15999335
    [Abstract] [Full Text] [Related]

  • 6. Structure and disorder in an unfolded state under nondenaturing conditions from ensemble models consistent with a large number of experimental restraints.
    Marsh JA, Forman-Kay JD.
    J Mol Biol; 2009 Aug 14; 391(2):359-74. PubMed ID: 19501099
    [Abstract] [Full Text] [Related]

  • 7. Conformational distributions of unfolded polypeptides from novel NMR techniques.
    Meier S, Blackledge M, Grzesiek S.
    J Chem Phys; 2008 Feb 07; 128(5):052204. PubMed ID: 18266409
    [Abstract] [Full Text] [Related]

  • 8. Atomic-level characterization of disordered protein ensembles.
    Mittag T, Forman-Kay JD.
    Curr Opin Struct Biol; 2007 Feb 07; 17(1):3-14. PubMed ID: 17250999
    [Abstract] [Full Text] [Related]

  • 9. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J, Ozenne V, Blackledge M, Jensen MR.
    Chemphyschem; 2013 Sep 16; 14(13):3034-45. PubMed ID: 23794453
    [Abstract] [Full Text] [Related]

  • 10. MINOES: a new approach to select a representative ensemble of structures in NMR studies of (partially) unfolded states. Application to Delta25-PYP.
    Krzeminski M, Fuentes G, Boelens R, Bonvin AM.
    Proteins; 2009 Mar 16; 74(4):895-904. PubMed ID: 18704926
    [Abstract] [Full Text] [Related]

  • 11. The effect of motional averaging on the calculation of NMR-derived structural properties.
    Daura X, Antes I, van Gunsteren WF, Thiel W, Mark AE.
    Proteins; 1999 Sep 01; 36(4):542-55. PubMed ID: 10450095
    [Abstract] [Full Text] [Related]

  • 12. Side chain dynamics in unfolded protein states: an NMR based 2H spin relaxation study of delta131delta.
    Choy WY, Shortle D, Kay LE.
    J Am Chem Soc; 2003 Feb 19; 125(7):1748-58. PubMed ID: 12580600
    [Abstract] [Full Text] [Related]

  • 13. DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure.
    Cheung MS, Maguire ML, Stevens TJ, Broadhurst RW.
    J Magn Reson; 2010 Feb 19; 202(2):223-33. PubMed ID: 20015671
    [Abstract] [Full Text] [Related]

  • 14. Unfolded protein ensembles, folding trajectories, and refolding rate prediction.
    Das A, Sin BK, Mohazab AR, Plotkin SS.
    J Chem Phys; 2013 Sep 28; 139(12):121925. PubMed ID: 24089737
    [Abstract] [Full Text] [Related]

  • 15. Structural interpretation of paramagnetic relaxation enhancement-derived distances for disordered protein states.
    Ganguly D, Chen J.
    J Mol Biol; 2009 Jul 17; 390(3):467-77. PubMed ID: 19447112
    [Abstract] [Full Text] [Related]

  • 16. Sequence-specific random coil chemical shifts of intrinsically disordered proteins.
    Tamiola K, Acar B, Mulder FA.
    J Am Chem Soc; 2010 Dec 29; 132(51):18000-3. PubMed ID: 21128621
    [Abstract] [Full Text] [Related]

  • 17. Ensemble modeling of protein disordered states: experimental restraint contributions and validation.
    Marsh JA, Forman-Kay JD.
    Proteins; 2012 Feb 29; 80(2):556-72. PubMed ID: 22095648
    [Abstract] [Full Text] [Related]

  • 18. Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins.
    Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M.
    Structure; 2010 Aug 11; 18(8):923-33. PubMed ID: 20696393
    [Abstract] [Full Text] [Related]

  • 19. Insights into partially folded or unfolded States of metalloproteins from nuclear magnetic resonance.
    Turano P.
    Inorg Chem; 2004 Dec 13; 43(25):7945-52. PubMed ID: 15578828
    [Abstract] [Full Text] [Related]

  • 20. Analyzing temperature-induced transitions in disordered proteins by NMR spectroscopy and secondary chemical shift analyses.
    Kjaergaard M, Poulsen FM, Kragelund BB.
    Methods Mol Biol; 2012 Dec 13; 896():249-56. PubMed ID: 22821529
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.