These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
242 related items for PubMed ID: 20064437
21. A dimeric fluorescent protein yields a bright, red-shifted GEVI capable of population signals in brain slice. Yi B, Kang BE, Lee S, Braubach S, Baker BJ. Sci Rep; 2018 Oct 12; 8(1):15199. PubMed ID: 30315245 [Abstract] [Full Text] [Related]
22. Insertion of the voltage-sensitive domain into circularly permuted red fluorescent protein as a design for genetically encoded voltage sensor. Kost LA, Nikitin ES, Ivanova VO, Sung U, Putintseva EV, Chudakov DM, Balaban PM, Lukyanov KA, Bogdanov AM. PLoS One; 2017 Oct 12; 12(9):e0184225. PubMed ID: 28863184 [Abstract] [Full Text] [Related]
23. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential. Piao HH, Rajakumar D, Kang BE, Kim EH, Baker BJ. J Neurosci; 2015 Jan 07; 35(1):372-85. PubMed ID: 25568129 [Abstract] [Full Text] [Related]
24. A Bright and Fast Red Fluorescent Protein Voltage Indicator That Reports Neuronal Activity in Organotypic Brain Slices. Abdelfattah AS, Farhi SL, Zhao Y, Brinks D, Zou P, Ruangkittisakul A, Platisa J, Pieribone VA, Ballanyi K, Cohen AE, Campbell RE. J Neurosci; 2016 Feb 24; 36(8):2458-72. PubMed ID: 26911693 [Abstract] [Full Text] [Related]
25. Imaging brain electric signals with genetically targeted voltage-sensitive fluorescent proteins. Akemann W, Mutoh H, Perron A, Rossier J, Knöpfel T. Nat Methods; 2010 Aug 24; 7(8):643-9. PubMed ID: 20622860 [Abstract] [Full Text] [Related]
26. Exploration of fluorescent protein voltage probes based on circularly permuted fluorescent proteins. Gautam SG, Perron A, Mutoh H, Knöpfel T. Front Neuroeng; 2009 Aug 24; 2():14. PubMed ID: 19862342 [Abstract] [Full Text] [Related]
27. Measuring membrane voltage with fluorescent proteins. Patti J, Isacoff EY. Cold Spring Harb Protoc; 2013 Jul 01; 2013(7):606-13. PubMed ID: 23818671 [Abstract] [Full Text] [Related]
28. Characterization of the Functional Domains of a Mammalian Voltage-Sensitive Phosphatase. Rosasco MG, Gordon SE, Bajjalieh SM. Biophys J; 2015 Dec 15; 109(12):2480-2491. PubMed ID: 26682807 [Abstract] [Full Text] [Related]
30. Imaging of Brain Slices with a Genetically Encoded Voltage Indicator. Quicke P, Barnes SJ, Knöpfel T. Methods Mol Biol; 2017 Dec 15; 1563():73-84. PubMed ID: 28324602 [Abstract] [Full Text] [Related]
31. Red Fluorescent Genetically Encoded Voltage Indicators with Millisecond Responsiveness. Kost LA, Ivanova VO, Balaban PM, Lukyanov KA, Nikitin ES, Bogdanov AM. Sensors (Basel); 2019 Jul 06; 19(13):. PubMed ID: 31284557 [Abstract] [Full Text] [Related]
32. Hydrophobic residues in S1 modulate enzymatic function and voltage sensing in voltage-sensing phosphatase. Rayaprolu V, Miettinen HM, Baker WD, Young VC, Fisher M, Mueller G, Rankin WO, Kelley JT, Ratzan WJ, Leong LM, Davisson JA, Baker BJ, Kohout SC. J Gen Physiol; 2024 Jul 01; 156(7):. PubMed ID: 38771271 [Abstract] [Full Text] [Related]
33. The evolving capabilities of rhodopsin-based genetically encoded voltage indicators. Gong Y. Curr Opin Chem Biol; 2015 Aug 01; 27():84-9. PubMed ID: 26143170 [Abstract] [Full Text] [Related]