These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mutual enhancement of the current density and the coulombic efficiency for a bioanode by entrapping bi-enzymes with Os-complex modified electrodeposition paints. Shao M, Zafar MN, Sygmund C, Guschin DA, Ludwig R, Peterbauer CK, Schuhmann W, Gorton L. Biosens Bioelectron; 2013 Feb 15; 40(1):308-14. PubMed ID: 22959203 [Abstract] [Full Text] [Related]
3. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Nöll G. Anal Chem; 2009 Apr 01; 81(7):2791-8. PubMed ID: 19256522 [Abstract] [Full Text] [Related]
4. Optimization of a membraneless glucose/oxygen enzymatic fuel cell based on a bioanode with high coulombic efficiency and current density. Shao M, Zafar MN, Falk M, Ludwig R, Sygmund C, Peterbauer CK, Guschin DA, MacAodha D, Ó Conghaile P, Leech D, Toscano MD, Shleev S, Schuhmann W, Gorton L. Chemphyschem; 2013 Jul 22; 14(10):2260-9. PubMed ID: 23568439 [Abstract] [Full Text] [Related]
6. A comparison of redox polymer and enzyme co-immobilization on carbon electrodes to provide membrane-less glucose/O2 enzymatic fuel cells with improved power output and stability. Rengaraj S, Kavanagh P, Leech D. Biosens Bioelectron; 2011 Dec 15; 30(1):294-9. PubMed ID: 22005596 [Abstract] [Full Text] [Related]
7. A comparison of glucose oxidase and aldose dehydrogenase as mediated anodes in printed glucose/oxygen enzymatic fuel cells using ABTS/laccase cathodes. Jenkins P, Tuurala S, Vaari A, Valkiainen M, Smolander M, Leech D. Bioelectrochemistry; 2012 Oct 15; 87():172-7. PubMed ID: 22200380 [Abstract] [Full Text] [Related]
8. A biofuel cell with electrochemically switchable and tunable power output. Katz E, Willner I. J Am Chem Soc; 2003 Jun 04; 125(22):6803-13. PubMed ID: 12769592 [Abstract] [Full Text] [Related]
9. Modification of carbon nanotubes with redox hydrogel: improvement of amperometric sensing sensitivity for redox enzymes. Cui HF, Ye JS, Zhang WD, Sheu FS. Biosens Bioelectron; 2009 Feb 15; 24(6):1723-9. PubMed ID: 18951014 [Abstract] [Full Text] [Related]
11. Enzymatic biofuel cell based on anode and cathode powered by ethanol. Ramanavicius A, Kausaite A, Ramanaviciene A. Biosens Bioelectron; 2008 Dec 01; 24(4):767-72. PubMed ID: 18693008 [Abstract] [Full Text] [Related]
12. Wiring of pyranose dehydrogenase with osmium polymers of different redox potentials. Zafar MN, Tasca F, Boland S, Kujawa M, Patel I, Peterbauer CK, Leech D, Gorton L. Bioelectrochemistry; 2010 Nov 01; 80(1):38-42. PubMed ID: 20466600 [Abstract] [Full Text] [Related]
13. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications. Yan YM, Yehezkeli O, Willner I. Chemistry; 2007 Nov 01; 13(36):10168-75. PubMed ID: 17937376 [Abstract] [Full Text] [Related]
14. Polypyrrole nanowire-based enzymatic biofuel cells. Kim J, Kim SI, Yoo KH. Biosens Bioelectron; 2009 Oct 15; 25(2):350-5. PubMed ID: 19695861 [Abstract] [Full Text] [Related]
15. Membraneless glucose/oxygen enzymatic fuel cells using redox hydrogel films containing carbon nanotubes. MacAodha D, Ó Conghaile P, Egan B, Kavanagh P, Leech D. Chemphyschem; 2013 Jul 22; 14(10):2302-7. PubMed ID: 23788272 [Abstract] [Full Text] [Related]
16. Membraneless enzymatic biofuel cells based on graphene nanosheets. Liu C, Alwarappan S, Chen Z, Kong X, Li CZ. Biosens Bioelectron; 2010 Mar 15; 25(7):1829-33. PubMed ID: 20056403 [Abstract] [Full Text] [Related]
17. Micro-biofuel cell powered by glucose/O2 based on electro-deposition of enzyme, conducting polymer and redox mediators: preparation, characterization and performance in human serum. Ammam M, Fransaer J. Biosens Bioelectron; 2010 Feb 15; 25(6):1474-80. PubMed ID: 20005695 [Abstract] [Full Text] [Related]
18. Electrochemical investigation of cellobiose dehydrogenase from new fungal sources on Au electrodes. Stoica L, Dimcheva N, Haltrich D, Ruzgas T, Gorton L. Biosens Bioelectron; 2005 Apr 15; 20(10):2010-8. PubMed ID: 15741070 [Abstract] [Full Text] [Related]
19. Engineering bio-interfaces for the direct electron transfer of Myriococcum thermophilum cellobiose dehydrogenase: Towards a mediator-less biosupercapacitor/biofuel cell hybrid. Yan X, Tang J, Ma S, Tanner D, Ludwig R, Ulstrup J, Xiao X. Biosens Bioelectron; 2022 Aug 15; 210():114337. PubMed ID: 35537312 [Abstract] [Full Text] [Related]
20. Polyethyleneimine as a promoter layer for the immobilization of cellobiose dehydrogenase from Myriococcum thermophilum on graphite electrodes. Schulz C, Ludwig R, Gorton L. Anal Chem; 2014 May 06; 86(9):4256-63. PubMed ID: 24746119 [Abstract] [Full Text] [Related] Page: [Next] [New Search]