These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
368 related items for PubMed ID: 20071166
21. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis. Dai L, Fan L, Liu Y, Ruan R, Wang Y, Zhou Y, Zhao Y, Yu Z. Bioresour Technol; 2017 Feb; 225():1-8. PubMed ID: 27875763 [Abstract] [Full Text] [Related]
22. Catalytic pyrolysis of waste furniture sawdust for bio-oil production. Uzun BB, Kanmaz G. Waste Manag Res; 2014 Jul; 32(7):646-52. PubMed ID: 25012860 [Abstract] [Full Text] [Related]
23. Catalytic pyrolysis of Alcea pallida stems in a fixed-bed reactor for production of liquid bio-fuels. Aysu T. Bioresour Technol; 2015 Sep; 191():253-62. PubMed ID: 26000835 [Abstract] [Full Text] [Related]
24. Catalytic pyrolysis of palm kernel shell waste in a fluidized bed. Kim SW, Koo BS, Lee DH. Bioresour Technol; 2014 Sep; 167():425-32. PubMed ID: 25006017 [Abstract] [Full Text] [Related]
25. Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts. Yu FW, Ji DX, Nie Y, Luo Y, Huang CJ, Ji JB. Appl Biochem Biotechnol; 2012 Sep; 168(1):174-82. PubMed ID: 21976150 [Abstract] [Full Text] [Related]
26. Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor. Zhang H, Xiao R, Huang H, Xiao G. Bioresour Technol; 2009 Feb; 100(3):1428-34. PubMed ID: 18829306 [Abstract] [Full Text] [Related]
27. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Islam MR, Parveen M, Haniu H. Bioresour Technol; 2010 Jun; 101(11):4162-8. PubMed ID: 20133132 [Abstract] [Full Text] [Related]
28. Estimation of a novel method to produce bio-oil from sewage sludge by microwave pyrolysis with the consideration of efficiency and safety. Tian Y, Zuo W, Ren Z, Chen D. Bioresour Technol; 2011 Jan; 102(2):2053-61. PubMed ID: 20952188 [Abstract] [Full Text] [Related]
29. Catalytic pyrolysis of cellulose with sulfated metal oxides: a promising method for obtaining high yield of light furan compounds. Lu Q, Xiong WM, Li WZ, Guo QX, Zhu XF. Bioresour Technol; 2009 Oct; 100(20):4871-6. PubMed ID: 19473837 [Abstract] [Full Text] [Related]
30. Phenol and phenolics from lignocellulosic biomass by catalytic microwave pyrolysis. Bu Q, Lei H, Ren S, Wang L, Holladay J, Zhang Q, Tang J, Ruan R. Bioresour Technol; 2011 Jul; 102(13):7004-7. PubMed ID: 21531545 [Abstract] [Full Text] [Related]
31. Catalytic upgrading of pyrolysis vapors from Jatropha wastes using alumina, zirconia and titania based catalysts. Kaewpengkrow P, Atong D, Sricharoenchaikul V. Bioresour Technol; 2014 Jul; 163():262-9. PubMed ID: 24821205 [Abstract] [Full Text] [Related]
32. Production of hydrocarbon fuels from pyrolysis of soybean oils using a basic catalyst. Xu J, Jiang J, Sun Y, Chen J. Bioresour Technol; 2010 Dec; 101(24):9803-6. PubMed ID: 20696566 [Abstract] [Full Text] [Related]
33. The effect of clay catalyst on the chemical composition of bio-oil obtained by co-pyrolysis of cellulose and polyethylene. Solak A, Rutkowski P. Waste Manag; 2014 Feb; 34(2):504-12. PubMed ID: 24252369 [Abstract] [Full Text] [Related]
34. Low pressure catalytic co-conversion of biogenic waste (rapeseed cake) and vegetable oil. Giannakopoulou K, Lukas M, Vasiliev A, Brunner C, Schnitzer H. Bioresour Technol; 2010 May; 101(9):3209-19. PubMed ID: 20060714 [Abstract] [Full Text] [Related]
35. Pyrolysis of safflower (Charthamus tinctorius L.) seed press cake in a fixed-bed reactor: part 2. Structural characterization of pyrolysis bio-oils. Sensöz S, Angin D. Bioresour Technol; 2008 Sep; 99(13):5498-504. PubMed ID: 18082398 [Abstract] [Full Text] [Related]
36. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor. Stefanidis SD, Kalogiannis KG, Iliopoulou EF, Lappas AA, Pilavachi PA. Bioresour Technol; 2011 Sep; 102(17):8261-7. PubMed ID: 21723115 [Abstract] [Full Text] [Related]
37. Influence of pyrolysis condition on switchgrass bio-oil yield and physicochemical properties. He R, Ye XP, English BC, Satrio JA. Bioresour Technol; 2009 Nov; 100(21):5305-11. PubMed ID: 19540108 [Abstract] [Full Text] [Related]
38. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Kim SJ, Jung SH, Kim JS. Bioresour Technol; 2010 Dec; 101(23):9294-300. PubMed ID: 20667720 [Abstract] [Full Text] [Related]
39. Fractions composition study of the pyrolysis oil obtained from sewage sludge treatment plant. Silva RV, Romeiro GA, Veloso MC, Figueiredo MK, Pinto PA, Ferreira AF, Gonçalves ML, Teixeira AM, Damasceno RN. Bioresour Technol; 2012 Jan; 103(1):459-65. PubMed ID: 22029957 [Abstract] [Full Text] [Related]
40. Effects of temperature and composite alumina on pyrolysis of sewage sludge. Sun Y, Jin B, Wu W, Zuo W, Zhang Y, Zhang Y, Huang Y. J Environ Sci (China); 2015 Apr 01; 30():1-8. PubMed ID: 25872704 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]