These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


368 related items for PubMed ID: 20071166

  • 41. Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina.
    Sanna A, Li S, Linforth R, Smart KA, Andrésen JM.
    Bioresour Technol; 2011 Nov; 102(22):10695-703. PubMed ID: 21930374
    [Abstract] [Full Text] [Related]

  • 42. Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product.
    Demiral I, Ayan EA.
    Bioresour Technol; 2011 Feb; 102(4):3946-51. PubMed ID: 21190842
    [Abstract] [Full Text] [Related]

  • 43. Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation.
    Qian Y, Zhang J, Wang J.
    Bioresour Technol; 2014 Dec; 174():95-102. PubMed ID: 25463787
    [Abstract] [Full Text] [Related]

  • 44. Bio-oil deoxygenation by catalytic pyrolysis: new catalysts for the conversion of biomass into densified and deoxygenated bio-oil.
    Sanna A, Andrésen JM.
    ChemSusChem; 2012 Oct; 5(10):1944-57. PubMed ID: 22899352
    [Abstract] [Full Text] [Related]

  • 45. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.
    Aysu T, Durak H, Güner S, Bengü AŞ, Esim N.
    Bioresour Technol; 2016 Apr; 205():7-14. PubMed ID: 26800388
    [Abstract] [Full Text] [Related]

  • 46. Utilisation of poultry industry wastes for liquid biofuel production via thermal and catalytic fast pyrolysis.
    Kantarli IC, Stefanidis SD, Kalogiannis KG, Lappas AA.
    Waste Manag Res; 2019 Feb; 37(2):157-167. PubMed ID: 30249165
    [Abstract] [Full Text] [Related]

  • 47. Low temperature conversion of plastic waste into light hydrocarbons.
    Shah SH, Khan ZM, Raja IA, Mahmood Q, Bhatti ZA, Khan J, Farooq A, Rashid N, Wu D.
    J Hazard Mater; 2010 Jul 15; 179(1-3):15-20. PubMed ID: 20172649
    [Abstract] [Full Text] [Related]

  • 48. Upgraded bio-oil production via catalytic fast co-pyrolysis of waste cooking oil and tea residual.
    Wang J, Zhong Z, Zhang B, Ding K, Xue Z, Deng A, Ruan R.
    Waste Manag; 2017 Feb 15; 60():357-362. PubMed ID: 27625179
    [Abstract] [Full Text] [Related]

  • 49. Pt/Al₂O₃-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil.
    Payormhorm J, Kangvansaichol K, Reubroycharoen P, Kuchonthara P, Hinchiranan N.
    Bioresour Technol; 2013 Jul 15; 139():128-35. PubMed ID: 23648762
    [Abstract] [Full Text] [Related]

  • 50. Essential Quality Attributes of Tangible Bio-Oils from Catalytic Pyrolysis of Lignocellulosic Biomass.
    Zhang C, Zhang ZC.
    Chem Rec; 2019 Sep 15; 19(9):2044-2057. PubMed ID: 31483089
    [Abstract] [Full Text] [Related]

  • 51. Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover.
    Yu F, Deng S, Chen P, Liu Y, Wan Y, Olson A, Kittelson D, Ruan R.
    Appl Biochem Biotechnol; 2007 Apr 15; 137-140(1-12):957-70. PubMed ID: 18478448
    [Abstract] [Full Text] [Related]

  • 52. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.
    Bu Q, Lei H, Wang L, Wei Y, Zhu L, Zhang X, Liu Y, Yadavalli G, Tang J.
    Bioresour Technol; 2014 Jun 15; 162():142-7. PubMed ID: 24747393
    [Abstract] [Full Text] [Related]

  • 53. Characteristic of fly ash derived-zeolite and its catalytic performance for fast pyrolysis of Jatropha waste.
    Vichaphund S, Aht-Ong D, Sricharoenchaikul V, Atong D.
    Environ Technol; 2014 Jun 15; 35(17-20):2254-61. PubMed ID: 25145178
    [Abstract] [Full Text] [Related]

  • 54. In situ catalytic pyrolysis of lignocellulose using alkali-modified amorphous silica alumina.
    Zabeti M, Nguyen TS, Lefferts L, Heeres HJ, Seshan K.
    Bioresour Technol; 2012 Aug 15; 118():374-81. PubMed ID: 22705959
    [Abstract] [Full Text] [Related]

  • 55. Pyrolysis of poppy capsule pulp for bio-oil production.
    Hopa DY, Yılmaz N, Alagöz O, Dilek M, Helvacı A, Durupınar Ü.
    Waste Manag Res; 2016 Dec 15; 34(12):1316-1321. PubMed ID: 27895286
    [Abstract] [Full Text] [Related]

  • 56. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y, He T, Liu K, Wu J, Fang Y.
    Bioresour Technol; 2012 Mar 15; 108():280-4. PubMed ID: 22281148
    [Abstract] [Full Text] [Related]

  • 57. Olive bagasse (Olea europea L.) pyrolysis.
    Sensöz S, Demiral I, Ferdi Gerçel H.
    Bioresour Technol; 2006 Feb 15; 97(3):429-36. PubMed ID: 16216727
    [Abstract] [Full Text] [Related]

  • 58. Characterization of bio-oil from induction-heating pyrolysis of food-processing sewage sludges using chromatographic analysis.
    Tsai WT, Lee MK, Chang JH, Su TY, Chang YM.
    Bioresour Technol; 2009 May 15; 100(9):2650-4. PubMed ID: 19136255
    [Abstract] [Full Text] [Related]

  • 59. Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate.
    Pütün E, Uzun BB, Pütün AE.
    Bioresour Technol; 2006 Mar 15; 97(5):701-10. PubMed ID: 15950461
    [Abstract] [Full Text] [Related]

  • 60. Kinetics of coffee industrial residue pyrolysis using distributed activation energy model and components separation of bio-oil by sequencing temperature-raising pyrolysis.
    Chen N, Ren J, Ye Z, Xu Q, Liu J, Sun S.
    Bioresour Technol; 2016 Dec 15; 221():534-540. PubMed ID: 27689350
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.