These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


320 related items for PubMed ID: 20071274

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Independence of amplitude-frequency and phase calibrations in an SSVEP-based BCI using stepping delay flickering sequences.
    Chang HC, Lee PL, Lo MT, Lee IH, Yeh TK, Chang CY.
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):305-12. PubMed ID: 22203724
    [Abstract] [Full Text] [Related]

  • 3. BCI demographics II: how many (and what kinds of) people can use a high-frequency SSVEP BCI?
    Volosyak I, Valbuena D, Lüth T, Malechka T, Gräser A.
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):232-9. PubMed ID: 21421448
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects.
    Blankertz B, Dornhege G, Krauledat M, Müller KR, Curio G.
    Neuroimage; 2007 Aug 15; 37(2):539-50. PubMed ID: 17475513
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ, Brunner C, Kaiser V, Müller-Putz GR, Neuper C, Pfurtscheller G.
    J Neural Eng; 2010 Apr 15; 7(2):26007. PubMed ID: 20332550
    [Abstract] [Full Text] [Related]

  • 11. How many people are able to control a P300-based brain-computer interface (BCI)?
    Guger C, Daban S, Sellers E, Holzner C, Krausz G, Carabalona R, Gramatica F, Edlinger G.
    Neurosci Lett; 2009 Oct 02; 462(1):94-8. PubMed ID: 19545601
    [Abstract] [Full Text] [Related]

  • 12. An online multi-channel SSVEP-based brain-computer interface using a canonical correlation analysis method.
    Bin G, Gao X, Yan Z, Hong B, Gao S.
    J Neural Eng; 2009 Aug 02; 6(4):046002. PubMed ID: 19494422
    [Abstract] [Full Text] [Related]

  • 13. Brain-computer interface using water-based electrodes.
    Volosyak I, Valbuena D, Malechka T, Peuscher J, Gräser A.
    J Neural Eng; 2010 Dec 02; 7(6):066007. PubMed ID: 21048286
    [Abstract] [Full Text] [Related]

  • 14. A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller.
    Martens SM, Leiva JM.
    J Neural Eng; 2010 Apr 02; 7(2):26003. PubMed ID: 20168003
    [Abstract] [Full Text] [Related]

  • 15. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials.
    Trejo LJ, Rosipal R, Matthews B.
    IEEE Trans Neural Syst Rehabil Eng; 2006 Jun 02; 14(2):225-9. PubMed ID: 16792300
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ, Kim HS, Heo J, Lim YG, Park KS.
    J Neural Eng; 2013 Apr 02; 10(2):024001. PubMed ID: 23448913
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.