These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Revised Backbone-Virtual-Bond-Angle Potentials to Treat the l- and d-Amino Acid Residues in the Coarse-Grained United Residue (UNRES) Force Field. Sieradzan AK, Niadzvedtski A, Scheraga HA, Liwo A. J Chem Theory Comput; 2014 May 13; 10(5):2194-2203. PubMed ID: 24839411 [Abstract] [Full Text] [Related]
5. Determination of effective potentials for the stretching of C(α) ⋯ C(α) virtual bonds in polypeptide chains for coarse-grained simulations of proteins from ab initio energy surfaces of N-methylacetamide and N-acetylpyrrolidine. Sieradzan AK, Scheraga HA, Liwo A. J Chem Theory Comput; 2012 Apr 10; 8(4):1334-1343. PubMed ID: 23087598 [Abstract] [Full Text] [Related]
7. Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field. Maisuradze GG, Senet P, Czaplewski C, Liwo A, Scheraga HA. J Phys Chem A; 2010 Apr 08; 114(13):4471-85. PubMed ID: 20166738 [Abstract] [Full Text] [Related]
8. Extension of UNRES force field to treat polypeptide chains with D-amino-acid residues. Sieradzan AK, Hansmann UH, Scheraga HA, Liwo A. J Chem Theory Comput; 2012 Nov 13; 8(11):4746-4757. PubMed ID: 24729761 [Abstract] [Full Text] [Related]
9. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. II. Backbone-local potentials of coarse-grained O1→4-bonded polyglucose chains. Lubecka EA, Liwo A. J Chem Phys; 2017 Sep 21; 147(11):115101. PubMed ID: 28938819 [Abstract] [Full Text] [Related]
10. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. III. Determination of scale-consistent backbone-local and correlation potentials in the UNRES force field and force-field calibration and validation. Liwo A, Sieradzan AK, Lipska AG, Czaplewski C, Joung I, Żmudzińska W, Hałabis A, Ołdziej S. J Chem Phys; 2019 Apr 21; 150(15):155104. PubMed ID: 31005069 [Abstract] [Full Text] [Related]
11. A general method for the derivation of the functional forms of the effective energy terms in coarse-grained energy functions of polymers. I. Backbone potentials of coarse-grained polypeptide chains. Sieradzan AK, Makowski M, Augustynowicz A, Liwo A. J Chem Phys; 2017 Mar 28; 146(12):124106. PubMed ID: 28388107 [Abstract] [Full Text] [Related]
12. Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method. Kaźmierkiewicz R, Liwo A, Scheraga HA. J Comput Chem; 2002 May 28; 23(7):715-23. PubMed ID: 11948589 [Abstract] [Full Text] [Related]
13. Exploring the parameter space of the coarse-grained UNRES force field by random search: selecting a transferable medium-resolution force field. He Y, Xiao Y, Liwo A, Scheraga HA. J Comput Chem; 2009 Oct 28; 30(13):2127-35. PubMed ID: 19242966 [Abstract] [Full Text] [Related]
14. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. Schrauber H, Eisenhaber F, Argos P. J Mol Biol; 1993 Mar 20; 230(2):592-612. PubMed ID: 8464066 [Abstract] [Full Text] [Related]
15. A new force field (ECEPP-05) for peptides, proteins, and organic molecules. Arnautova YA, Jagielska A, Scheraga HA. J Phys Chem B; 2006 Mar 16; 110(10):5025-44. PubMed ID: 16526746 [Abstract] [Full Text] [Related]
16. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK, Liwo A, Scheraga HA. J Chem Phys; 2007 Oct 21; 127(15):155103. PubMed ID: 17949219 [Abstract] [Full Text] [Related]
19. Rotamer strain energy in protein helices - quantification of a major force opposing protein folding. Penel S, Doig AJ. J Mol Biol; 2001 Jan 26; 305(4):961-8. PubMed ID: 11162106 [Abstract] [Full Text] [Related]