These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 20079372
1. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury. Zhang SX, Huang F, Gates M, White J, Holmberg EG. J Neurosci Methods; 2010 Mar 30; 187(2):183-9. PubMed ID: 20079372 [Abstract] [Full Text] [Related]
2. Tail nerve electrical stimulation combined with scar ablation and neural transplantation promotes locomotor recovery in rats with chronically contused spinal cord. Zhang SX, Huang F, Gates M, Holmberg EG. Brain Res; 2012 May 25; 1456():22-35. PubMed ID: 22516110 [Abstract] [Full Text] [Related]
3. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury. Zhang SX, Huang F, Gates M, Shen X, Holmberg EG. Spinal Cord; 2016 Nov 25; 54(11):942-946. PubMed ID: 27067652 [Abstract] [Full Text] [Related]
4. Stereotactic radiosurgery improves locomotor recovery after spinal cord injury in rats. Zeman RJ, Wen X, Ouyang N, Rocchio R, Shih L, Alfieri A, Moorthy C, Etlinger JD. Neurosurgery; 2008 Nov 25; 63(5):981-7; discussion 987-8. PubMed ID: 19005390 [Abstract] [Full Text] [Related]
5. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Basso DM, Beattie MS, Bresnahan JC. Exp Neurol; 1996 Jun 25; 139(2):244-56. PubMed ID: 8654527 [Abstract] [Full Text] [Related]
6. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats. Zhang YT, Jin H, Wang JH, Wen LY, Yang Y, Ruan JW, Zhang SX, Ling EA, Ding Y, Zeng YS. Neural Plast; 2017 Jun 25; 2017():7351238. PubMed ID: 28744378 [Abstract] [Full Text] [Related]
7. Intraspinal stimulation caudal to spinal cord transections in rats. Testing the propriospinal hypothesis. Yakovenko S, Kowalczewski J, Prochazka A. J Neurophysiol; 2007 Mar 25; 97(3):2570-4. PubMed ID: 17215510 [Abstract] [Full Text] [Related]
8. Hindlimb loading determines stepping quantity and quality following spinal cord transection. Timoszyk WK, Nessler JA, Acosta C, Roy RR, Edgerton VR, Reinkensmeyer DJ, de Leon R. Brain Res; 2005 Jul 19; 1050(1-2):180-9. PubMed ID: 15979592 [Abstract] [Full Text] [Related]
9. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury. Bennett DJ, Sanelli L, Cooke CL, Harvey PJ, Gorassini MA. J Neurophysiol; 2004 May 19; 91(5):2247-58. PubMed ID: 15069102 [Abstract] [Full Text] [Related]
10. Re-expression of locomotor function after partial spinal cord injury. Rossignol S, Barrière G, Alluin O, Frigon A. Physiology (Bethesda); 2009 Apr 19; 24():127-39. PubMed ID: 19364915 [Abstract] [Full Text] [Related]
11. X-irradiation of the contusion site improves locomotor and histological outcomes in spinal cord-injured rats. Zeman RJ, Feng Y, Peng H, Visintainer PF, Moorthy CR, Couldwell WT, Etlinger JD. Exp Neurol; 2001 Nov 19; 172(1):228-34. PubMed ID: 11681855 [Abstract] [Full Text] [Related]
12. Potential of adult mammalian lumbosacral spinal cord to execute and acquire improved locomotion in the absence of supraspinal input. Edgerton VR, Roy RR, Hodgson JA, Prober RJ, de Guzman CP, de Leon R. J Neurotrauma; 1992 Mar 19; 9 Suppl 1():S119-28. PubMed ID: 1588602 [Abstract] [Full Text] [Related]
13. Course of motor recovery following ventrolateral spinal cord injury in the rat. Webb AA, Muir GD. Behav Brain Res; 2004 Nov 05; 155(1):55-65. PubMed ID: 15325779 [Abstract] [Full Text] [Related]
14. Locomotor training after human spinal cord injury: a series of case studies. Behrman AL, Harkema SJ. Phys Ther; 2000 Jul 05; 80(7):688-700. PubMed ID: 10869131 [Abstract] [Full Text] [Related]
15. Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury. Jakeman LB, Wei P, Guan Z, Stokes BT. Exp Neurol; 1998 Nov 05; 154(1):170-84. PubMed ID: 9875278 [Abstract] [Full Text] [Related]
16. Electrical stimulation affects the differentiation of transplanted regionally specific human spinal neural progenitor cells (sNPCs) after chronic spinal cord injury. Patil N, Korenfeld O, Scalf RN, Lavoie N, Huntemer-Silveira A, Han G, Swenson R, Parr AM. Stem Cell Res Ther; 2023 Dec 20; 14(1):378. PubMed ID: 38124191 [Abstract] [Full Text] [Related]
17. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR. Neurosci Lett; 2005 Aug 05; 383(3):339-44. PubMed ID: 15878636 [Abstract] [Full Text] [Related]
18. Training improves the electrophysiological properties of lumbar neurons and locomotion after thoracic spinal cord injury in rats. Beaumont E, Kaloustian S, Rousseau G, Cormery B. Neurosci Res; 2008 Nov 05; 62(3):147-54. PubMed ID: 18760313 [Abstract] [Full Text] [Related]
19. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats. You SW, Chen BY, Liu HL, Lang B, Xia JL, Jiao XY, Ju G. Restor Neurol Neurosci; 2003 Nov 05; 21(1-2):39-45. PubMed ID: 12808201 [Abstract] [Full Text] [Related]
20. X-ray microbeam irradiation of the contusion-injured rat spinal cord temporarily improves hind-limb function. Dilmanian FA, Jenkins AL, Olschowka JA, Zhong Z, Park JY, Desnoyers NR, Sobotka S, Fois GR, Messina CR, Morales M, Hurley SD, Trojanczyk L, Ahmad S, Shahrabi N, Coyle PK, Meek AG, O'Banion MK. Radiat Res; 2013 Jan 05; 179(1):76-88. PubMed ID: 23216524 [Abstract] [Full Text] [Related] Page: [Next] [New Search]