These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
439 related items for PubMed ID: 20079539
1. Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. Thiadens AA, Roosing S, Collin RW, van Moll-Ramirez N, van Lith-Verhoeven JJ, van Schooneveld MJ, den Hollander AI, van den Born LI, Hoyng CB, Cremers FP, Klaver CC. Ophthalmology; 2010 Apr; 117(4):825-30.e1. PubMed ID: 20079539 [Abstract] [Full Text] [Related]
5. Genetic etiology and clinical consequences of complete and incomplete achromatopsia. Thiadens AA, Slingerland NW, Roosing S, van Schooneveld MJ, van Lith-Verhoeven JJ, van Moll-Ramirez N, van den Born LI, Hoyng CB, Cremers FP, Klaver CC. Ophthalmology; 2009 Oct 17; 116(10):1984-9.e1. PubMed ID: 19592100 [Abstract] [Full Text] [Related]
6. CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia. Kohl S, Varsanyi B, Antunes GA, Baumann B, Hoyng CB, Jägle H, Rosenberg T, Kellner U, Lorenz B, Salati R, Jurklies B, Farkas A, Andreasson S, Weleber RG, Jacobson SG, Rudolph G, Castellan C, Dollfus H, Legius E, Anastasi M, Bitoun P, Lev D, Sieving PA, Munier FL, Zrenner E, Sharpe LT, Cremers FP, Wissinger B. Eur J Hum Genet; 2005 Mar 17; 13(3):302-8. PubMed ID: 15657609 [Abstract] [Full Text] [Related]
7. Oligocone trichromacy: clinical and molecular genetic investigations. Andersen MK, Christoffersen NL, Sander B, Edmund C, Larsen M, Grau T, Wissinger B, Kohl S, Rosenberg T. Invest Ophthalmol Vis Sci; 2010 Jan 17; 51(1):89-95. PubMed ID: 19797231 [Abstract] [Full Text] [Related]
8. Maternal uniparental isodisomy of chromosome 6 reveals a TULP1 mutation as a novel cause of cone dysfunction. Roosing S, van den Born LI, Hoyng CB, Thiadens AA, de Baere E, Collin RW, Koenekoop RK, Leroy BP, van Moll-Ramirez N, Venselaar H, Riemslag FC, Cremers FP, Klaver CC, den Hollander AI. Ophthalmology; 2013 Jun 17; 120(6):1239-46. PubMed ID: 23499059 [Abstract] [Full Text] [Related]
9. Genetics and Disease Expression in the CNGA3 Form of Achromatopsia: Steps on the Path to Gene Therapy. Zelinger L, Cideciyan AV, Kohl S, Schwartz SB, Rosenmann A, Eli D, Sumaroka A, Roman AJ, Luo X, Brown C, Rosin B, Blumenfeld A, Wissinger B, Jacobson SG, Banin E, Sharon D. Ophthalmology; 2015 May 17; 122(5):997-1007. PubMed ID: 25616768 [Abstract] [Full Text] [Related]
10. Cone dystrophy with supernormal rod response is strictly associated with mutations in KCNV2. Wissinger B, Dangel S, Jägle H, Hansen L, Baumann B, Rudolph G, Wolf C, Bonin M, Koeppen K, Ladewig T, Kohl S, Zrenner E, Rosenberg T. Invest Ophthalmol Vis Sci; 2008 Feb 17; 49(2):751-7. PubMed ID: 18235024 [Abstract] [Full Text] [Related]
11. CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. Khan NW, Wissinger B, Kohl S, Sieving PA. Invest Ophthalmol Vis Sci; 2007 Aug 17; 48(8):3864-71. PubMed ID: 17652762 [Abstract] [Full Text] [Related]
12. Mutations in CNGA3 impair trafficking or function of cone cyclic nucleotide-gated channels, resulting in achromatopsia. Reuter P, Koeppen K, Ladewig T, Kohl S, Baumann B, Wissinger B, Achromatopsia Clinical Study Group. Hum Mutat; 2008 Oct 17; 29(10):1228-36. PubMed ID: 18521937 [Abstract] [Full Text] [Related]
13. Disease-associated mutations in CNGB3 produce gain of function alterations in cone cyclic nucleotide-gated channels. Bright SR, Brown TE, Varnum MD. Mol Vis; 2005 Dec 19; 11():1141-50. PubMed ID: 16379026 [Abstract] [Full Text] [Related]
14. Progressive cone dystrophy associated with mutation in CNGB3. Michaelides M, Aligianis IA, Ainsworth JR, Good P, Mollon JD, Maher ER, Moore AT, Hunt DM. Invest Ophthalmol Vis Sci; 2004 Jun 19; 45(6):1975-82. PubMed ID: 15161866 [Abstract] [Full Text] [Related]
15. Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy. Michaelides M, Wilkie SE, Jenkins S, Holder GE, Hunt DM, Moore AT, Webster AR. Ophthalmology; 2005 Aug 19; 112(8):1442-7. PubMed ID: 15953638 [Abstract] [Full Text] [Related]
16. Novel mutations and electrophysiologic findings in RGS9- and R9AP-associated retinal dysfunction (Bradyopsia). Michaelides M, Li Z, Rana NA, Richardson EC, Hykin PG, Moore AT, Holder GE, Webster AR. Ophthalmology; 2010 Jan 19; 117(1):120-127.e1. PubMed ID: 19818506 [Abstract] [Full Text] [Related]
18. Transmembrane S1 mutations in CNGA3 from achromatopsia 2 patients cause loss of function and impaired cellular trafficking of the cone CNG channel. Patel KA, Bartoli KM, Fandino RA, Ngatchou AN, Woch G, Carey J, Tanaka JC. Invest Ophthalmol Vis Sci; 2005 Jul 19; 46(7):2282-90. PubMed ID: 15980212 [Abstract] [Full Text] [Related]
19. Novel mutations in the gene for α-subunit of retinal cone cyclic nucleotide-gated channels in a Japanese patient with congenital achromatopsia. Kuniyoshi K, Muraki-Oda S, Ueyama H, Toyoda F, Sakuramoto H, Ogita H, Irifune M, Yamamoto S, Nakao A, Tsunoda K, Iwata T, Ohji M, Shimomura Y. Jpn J Ophthalmol; 2016 May 19; 60(3):187-97. PubMed ID: 27040408 [Abstract] [Full Text] [Related]
20. Variable retinal phenotypes caused by mutations in the X-linked photopigment gene array. Mizrahi-Meissonnier L, Merin S, Banin E, Sharon D. Invest Ophthalmol Vis Sci; 2010 Aug 19; 51(8):3884-92. PubMed ID: 20220053 [Abstract] [Full Text] [Related] Page: [Next] [New Search]