These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


301 related items for PubMed ID: 20079967

  • 1. Insight into removal kinetic and mechanisms of anionic dye by calcined clay materials and lime.
    Vimonses V, Jin B, Chow CW.
    J Hazard Mater; 2010 May 15; 177(1-3):420-7. PubMed ID: 20079967
    [Abstract] [Full Text] [Related]

  • 2. Enhancing removal efficiency of anionic dye by combination and calcination of clay materials and calcium hydroxide.
    Vimonses V, Jin B, Chow CW, Saint C.
    J Hazard Mater; 2009 Nov 15; 171(1-3):941-7. PubMed ID: 19604637
    [Abstract] [Full Text] [Related]

  • 3. NiO111 nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater.
    Song Z, Chen L, Hu J, Richards R.
    Nanotechnology; 2009 Jul 08; 20(27):275707. PubMed ID: 19531863
    [Abstract] [Full Text] [Related]

  • 4. Removal of congo red from aqueous solution by adsorption onto acid activated red mud.
    Tor A, Cengeloglu Y.
    J Hazard Mater; 2006 Nov 16; 138(2):409-15. PubMed ID: 16846690
    [Abstract] [Full Text] [Related]

  • 5. Application of low-cost adsorbents for dye removal--a review.
    Gupta VK, Suhas.
    J Environ Manage; 2009 Jun 16; 90(8):2313-42. PubMed ID: 19264388
    [Abstract] [Full Text] [Related]

  • 6. Removal of rhodamine B from aqueous solution by adsorption onto sodium montmorillonite.
    Selvam PP, Preethi S, Basakaralingam P, Thinakaran N, Sivasamy A, Sivanesan S.
    J Hazard Mater; 2008 Jun 30; 155(1-2):39-44. PubMed ID: 18162299
    [Abstract] [Full Text] [Related]

  • 7. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime.
    Islam M, Patel RK.
    J Hazard Mater; 2007 May 08; 143(1-2):303-10. PubMed ID: 17046155
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. High efficiency of treated-phengite clay by sodium hydroxide for the Congo red dye adsorption: Optimization, cost estimation, and mechanism study.
    El-Habacha M, Lagdali S, Dabagh A, Mahmoudy G, Assouani A, Benjelloun M, Miyah Y, Iaich S, Chiban M, Zerbet M.
    Environ Res; 2024 Oct 15; 259():119542. PubMed ID: 38969319
    [Abstract] [Full Text] [Related]

  • 17. Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera.
    Marungrueng K, Pavasant P.
    J Environ Manage; 2006 Feb 15; 78(3):268-74. PubMed ID: 16112338
    [Abstract] [Full Text] [Related]

  • 18. Removal of congo red using activated carbon and its regeneration.
    Purkait MK, Maiti A, DasGupta S, De S.
    J Hazard Mater; 2007 Jun 25; 145(1-2):287-95. PubMed ID: 17178190
    [Abstract] [Full Text] [Related]

  • 19. Bio-based composite from chitosan waste and clay for effective removal of Congo red dye from contaminated water: Experimental studies and theoretical insights.
    Bellaj M, Naboulsi A, Aziz K, Regti A, El Himri M, El Haddad M, El Achaby M, Abourriche A, Gebrati L, Kurniawan TA, Aziz F.
    Environ Res; 2024 Aug 15; 255():119089. PubMed ID: 38788787
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.