These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 20085309

  • 1. Sponge-derived Streptomyces producing isoprenoids via the mevalonate pathway.
    Izumikawa M, Khan ST, Takagi M, Shin-ya K.
    J Nat Prod; 2010 Feb 26; 73(2):208-12. PubMed ID: 20085309
    [Abstract] [Full Text] [Related]

  • 2. Distribution of the 3-hydroxyl-3-methylglutaryl coenzyme A reductase gene and isoprenoid production in marine-derived Actinobacteria.
    Khan ST, Izumikawa M, Motohashi K, Mukai A, Takagi M, Shin-Ya K.
    FEMS Microbiol Lett; 2010 Mar 26; 304(1):89-96. PubMed ID: 20067528
    [Abstract] [Full Text] [Related]

  • 3. Studies on biosynthetic genes and enzymes of isoprenoids produced by actinomycetes.
    Dairi T.
    J Antibiot (Tokyo); 2005 Apr 26; 58(4):227-43. PubMed ID: 15981409
    [Abstract] [Full Text] [Related]

  • 4. Biosynthetic origins of the isoprene units of gaudichaudianic acid in Piper gaudichaudianum (Piperaceae).
    Lopes AA, Baldoqui DC, López SN, Kato MJ, Bolzani Vda S, Furlan M.
    Phytochemistry; 2007 Aug 26; 68(15):2053-8. PubMed ID: 17574633
    [Abstract] [Full Text] [Related]

  • 5. Isoprenoid biosynthesis via 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway.
    Wanke M, Skorupinska-Tudek K, Swiezewska E.
    Acta Biochim Pol; 2001 Aug 26; 48(3):663-72. PubMed ID: 11833775
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. The interplay between classical and alternative isoprenoid biosynthesis controls gammadelta T cell bioactivity of Listeria monocytogenes.
    Begley M, Gahan CG, Kollas AK, Hintz M, Hill C, Jomaa H, Eberl M.
    FEBS Lett; 2004 Mar 12; 561(1-3):99-104. PubMed ID: 15013758
    [Abstract] [Full Text] [Related]

  • 10. Both methylerythritol phosphate and mevalonate pathways contribute to biosynthesis of each of the major isoprenoid classes in young cotton seedlings.
    Opitz S, Nes WD, Gershenzon J.
    Phytochemistry; 2014 Feb 12; 98():110-9. PubMed ID: 24359633
    [Abstract] [Full Text] [Related]

  • 11. Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells.
    Hemmerlin A, Hoeffler JF, Meyer O, Tritsch D, Kagan IA, Grosdemange-Billiard C, Rohmer M, Bach TJ.
    J Biol Chem; 2003 Jul 18; 278(29):26666-76. PubMed ID: 12736259
    [Abstract] [Full Text] [Related]

  • 12. Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte.
    Grauvogel C, Petersen J.
    Gene; 2007 Jul 01; 396(1):125-33. PubMed ID: 17433859
    [Abstract] [Full Text] [Related]

  • 13. Network analysis of the MVA and MEP pathways for isoprenoid synthesis.
    Vranová E, Coman D, Gruissem W.
    Annu Rev Plant Biol; 2013 Jul 01; 64():665-700. PubMed ID: 23451776
    [Abstract] [Full Text] [Related]

  • 14. Biosynthesis of the isoprenoid moieties of furanonaphthoquinone I and endophenazine A in Streptomyces cinnamonensis DSM 1042.
    Bringmann G, Haagen Y, Gulder TA, Gulder T, Heide L.
    J Org Chem; 2007 May 25; 72(11):4198-204. PubMed ID: 17474781
    [Abstract] [Full Text] [Related]

  • 15. Isoprenoid generating systems in plants - A handy toolbox how to assess contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthetic process.
    Lipko A, Swiezewska E.
    Prog Lipid Res; 2016 Jul 25; 63():70-92. PubMed ID: 27133788
    [Abstract] [Full Text] [Related]

  • 16. Strategies of isoprenoids production in engineered bacteria.
    Li Y, Wang G.
    J Appl Microbiol; 2016 Oct 25; 121(4):932-40. PubMed ID: 27428054
    [Abstract] [Full Text] [Related]

  • 17. Mevalonic acid partially restores chloroplast and etioplast development in Arabidopsis lacking the non-mevalonate pathway.
    Nagata N, Suzuki M, Yoshida S, Muranaka T.
    Planta; 2002 Dec 25; 216(2):345-50. PubMed ID: 12447549
    [Abstract] [Full Text] [Related]

  • 18. Tracing the biosynthetic origin of limonoids and their functional groups through stable isotope labeling and inhibition in neem tree (Azadirachta indica) cell suspension.
    Aarthy T, Mulani FA, Pandreka A, Kumar A, Nandikol SS, Haldar S, Thulasiram HV.
    BMC Plant Biol; 2018 Oct 11; 18(1):230. PubMed ID: 30314459
    [Abstract] [Full Text] [Related]

  • 19. Trichostatin analogues JBIR-109, JBIR-110, and JBIR-111 from the marine sponge-derived Streptomyces sp. RM72.
    Hosoya T, Hirokawa T, Takagi M, Shin-ya K.
    J Nat Prod; 2012 Feb 24; 75(2):285-9. PubMed ID: 22276693
    [Abstract] [Full Text] [Related]

  • 20. Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites.
    Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B.
    Plant J; 2004 Apr 24; 38(1):131-41. PubMed ID: 15053766
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.