These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1227 related items for PubMed ID: 20085830

  • 1. Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium.
    Park JW, Kim HK, Kim YJ, Jang JH, Song H, Hanawa T.
    Acta Biomater; 2010 Jul; 6(7):2843-51. PubMed ID: 20085830
    [Abstract] [Full Text] [Related]

  • 2. Enhanced osteoblast response to hydrophilic strontium and/or phosphate ions-incorporated titanium oxide surfaces.
    Park JW, Kim YJ, Jang JH.
    Clin Oral Implants Res; 2010 Apr 01; 21(4):398-408. PubMed ID: 20128830
    [Abstract] [Full Text] [Related]

  • 3. Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces.
    Park JW, Kim YJ, Jang JH, Kwon TG, Bae YC, Suh JY.
    Acta Biomater; 2010 Apr 01; 6(4):1661-70. PubMed ID: 19819355
    [Abstract] [Full Text] [Related]

  • 4. The role of titanium implant surface modification with hydroxyapatite nanoparticles in progressive early bone-implant fixation in vivo.
    Lin A, Wang CJ, Kelly J, Gubbi P, Nishimura I.
    Int J Oral Maxillofac Implants; 2009 Apr 01; 24(5):808-16. PubMed ID: 19865620
    [Abstract] [Full Text] [Related]

  • 5. Effect of a niobium-containing titanium alloy on osteoblast behavior in culture.
    Shapira L, Klinger A, Tadir A, Wilensky A, Halabi A.
    Clin Oral Implants Res; 2009 Jun 01; 20(6):578-82. PubMed ID: 19530314
    [Abstract] [Full Text] [Related]

  • 6. Varying Ti-6Al-4V surface roughness induces different early morphologic and molecular responses in MG63 osteoblast-like cells.
    Kim HJ, Kim SH, Kim MS, Lee EJ, Oh HG, Oh WM, Park SW, Kim WJ, Lee GJ, Choi NG, Koh JT, Dinh DB, Hardin RR, Johnson K, Sylvia VL, Schmitz JP, Dean DD.
    J Biomed Mater Res A; 2005 Sep 01; 74(3):366-73. PubMed ID: 15983984
    [Abstract] [Full Text] [Related]

  • 7. Enhanced osteoconductivity of micro-structured titanium implants (XiVE S CELLplus) by addition of surface calcium chemistry: a histomorphometric study in the rabbit femur.
    Park JW, Kim HK, Kim YJ, An CH, Hanawa T.
    Clin Oral Implants Res; 2009 Jul 01; 20(7):684-90. PubMed ID: 19489932
    [Abstract] [Full Text] [Related]

  • 8. Effects of calcium ion incorporation on bone healing of Ti6Al4V alloy implants in rabbit tibiae.
    Park JW, Park KB, Suh JY.
    Biomaterials; 2007 Aug 01; 28(22):3306-13. PubMed ID: 17462729
    [Abstract] [Full Text] [Related]

  • 9. Osseointegration of two different phosphate ion-containing titanium oxide surfaces in rabbit cancellous bone.
    Park JW.
    Clin Oral Implants Res; 2013 Aug 01; 24 Suppl A100():145-51. PubMed ID: 22251085
    [Abstract] [Full Text] [Related]

  • 10. Enhanced osteoblast response to an equal channel angular pressing-processed pure titanium substrate with microrough surface topography.
    Park JW, Kim YJ, Park CH, Lee DH, Ko YG, Jang JH, Lee CS.
    Acta Biomater; 2009 Oct 01; 5(8):3272-80. PubMed ID: 19426841
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Sphene ceramics for orthopedic coating applications: an in vitro and in vivo study.
    Ramaswamy Y, Wu C, Dunstan CR, Hewson B, Eindorf T, Anderson GI, Zreiqat H.
    Acta Biomater; 2009 Oct 01; 5(8):3192-204. PubMed ID: 19457458
    [Abstract] [Full Text] [Related]

  • 13. The relative effect of surface strontium chemistry and super-hydrophilicity on the early osseointegration of moderately rough titanium surface in the rabbit femur.
    Park JW, Kwon TG, Suh JY.
    Clin Oral Implants Res; 2013 Jun 01; 24(6):706-9. PubMed ID: 22409778
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Osseointegration of commercial microstructured titanium implants incorporating magnesium: a histomorphometric study in rabbit cancellous bone.
    Park JW, An CH, Jeong SH, Suh JY.
    Clin Oral Implants Res; 2012 Mar 01; 23(3):294-300. PubMed ID: 21435010
    [Abstract] [Full Text] [Related]

  • 16. Osteoconductivity of hydrophilic microstructured titanium implants with phosphate ion chemistry.
    Park JW, Jang JH, Lee CS, Hanawa T.
    Acta Biomater; 2009 Jul 01; 5(6):2311-21. PubMed ID: 19332400
    [Abstract] [Full Text] [Related]

  • 17. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts.
    Ponader S, Vairaktaris E, Heinl P, Wilmowsky CV, Rottmair A, Körner C, Singer RF, Holst S, Schlegel KA, Neukam FW, Nkenke E.
    J Biomed Mater Res A; 2008 Mar 15; 84(4):1111-9. PubMed ID: 17685409
    [Abstract] [Full Text] [Related]

  • 18. The cytocompatibility and osseointegration of the Ti implants with XPEED® surfaces.
    Lee SY, Yang DJ, Yeo S, An HW, Ryoo KH, Park KB.
    Clin Oral Implants Res; 2012 Nov 15; 23(11):1283-9. PubMed ID: 22093072
    [Abstract] [Full Text] [Related]

  • 19. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R, Lüthen F, Stir M, Nebe B, Burkel E.
    Biomol Eng; 2007 Nov 15; 24(5):564-7. PubMed ID: 17869173
    [Abstract] [Full Text] [Related]

  • 20. Effect of H2O2/HCl heat treatment of implants on in vivo peri-implant bone formation.
    Yang GL, He FM, Zhao SS, Wang XX, Zhao SF.
    Int J Oral Maxillofac Implants; 2008 Nov 15; 23(6):1020-8. PubMed ID: 19216270
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 62.