These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 20086158

  • 1. Activity of a new cephalosporin, CXA-101 (FR264205), against beta-lactam-resistant Pseudomonas aeruginosa mutants selected in vitro and after antipseudomonal treatment of intensive care unit patients.
    Moya B, Zamorano L, Juan C, Pérez JL, Ge Y, Oliver A.
    Antimicrob Agents Chemother; 2010 Mar; 54(3):1213-7. PubMed ID: 20086158
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Pan-β-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities.
    Moyá B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, Oliver A.
    Antimicrob Agents Chemother; 2012 Sep; 56(9):4771-8. PubMed ID: 22733064
    [Abstract] [Full Text] [Related]

  • 4. Mutation-driven β-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from U.S. hospitals.
    Castanheira M, Mills JC, Farrell DJ, Jones RN.
    Antimicrob Agents Chemother; 2014 Nov; 58(11):6844-50. PubMed ID: 25182652
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. AmpG inactivation restores susceptibility of pan-beta-lactam-resistant Pseudomonas aeruginosa clinical strains.
    Zamorano L, Reeve TM, Juan C, Moyá B, Cabot G, Vocadlo DJ, Mark BL, Oliver A.
    Antimicrob Agents Chemother; 2011 May; 55(5):1990-6. PubMed ID: 21357303
    [Abstract] [Full Text] [Related]

  • 7. Impact of chromosomally encoded resistance mechanisms and transferable β-lactamases on the activity of cefiderocol and innovative β-lactam/β-lactamase inhibitor combinations against Pseudomonas aeruginosa.
    González-Pinto L, Alonso-García I, Blanco-Martín T, Camacho-Zamora P, Fraile-Ribot PA, Outeda-García M, Lasarte-Monterrubio C, Guijarro-Sánchez P, Maceiras R, Moya B, Juan C, Vázquez-Ucha JC, Beceiro A, Oliver A, Bou G, Arca-Suárez J.
    J Antimicrob Chemother; 2024 Oct 01; 79(10):2591-2597. PubMed ID: 39073766
    [Abstract] [Full Text] [Related]

  • 8. Activity of cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates.
    Livermore DM, Mushtaq S, Ge Y, Warner M.
    Int J Antimicrob Agents; 2009 Nov 01; 34(5):402-6. PubMed ID: 19428220
    [Abstract] [Full Text] [Related]

  • 9. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins.
    Berrazeg M, Jeannot K, Ntsogo Enguéné VY, Broutin I, Loeffert S, Fournier D, Plésiat P.
    Antimicrob Agents Chemother; 2015 Oct 01; 59(10):6248-55. PubMed ID: 26248364
    [Abstract] [Full Text] [Related]

  • 10. Characterization of acquired β-lactamases in Pseudomonas aeruginosa and quantification of their contributions to resistance.
    Glen KA, Lamont IL.
    Microbiol Spectr; 2024 Oct 03; 12(10):e0069424. PubMed ID: 39248479
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Activity of Ceftolozane-Tazobactam against Carbapenem-Resistant, Non-Carbapenemase-Producing Pseudomonas aeruginosa and Associated Resistance Mechanisms.
    Wi YM, Greenwood-Quaintance KE, Schuetz AN, Ko KS, Peck KR, Song JH, Patel R.
    Antimicrob Agents Chemother; 2018 Jan 03; 62(1):. PubMed ID: 29133568
    [Abstract] [Full Text] [Related]

  • 14. Phylogenetic analysis of resistance to ceftazidime/avibactam, ceftolozane/tazobactam and carbapenems in piperacillin/tazobactam-resistant Pseudomonas aeruginosa from cystic fibrosis patients.
    Zamudio R, Hijazi K, Joshi C, Aitken E, Oggioni MR, Gould IM.
    Int J Antimicrob Agents; 2019 Jun 03; 53(6):774-780. PubMed ID: 30831233
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Pseudomonas aeruginosa ceftolozane-tazobactam resistance development requires multiple mutations leading to overexpression and structural modification of AmpC.
    Cabot G, Bruchmann S, Mulet X, Zamorano L, Moyà B, Juan C, Haussler S, Oliver A.
    Antimicrob Agents Chemother; 2014 Jun 03; 58(6):3091-9. PubMed ID: 24637685
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Ceftolozane/tazobactam activity against drug-resistant Enterobacteriaceae and Pseudomonas aeruginosa causing healthcare-associated infections in the Asia-Pacific region (minus China, Australia and New Zealand): report from an Antimicrobial Surveillance Programme (2013-2015).
    Pfaller MA, Shortridge D, Sader HS, Castanheira M, Flamm RK.
    Int J Antimicrob Agents; 2018 Feb 03; 51(2):181-189. PubMed ID: 28993143
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.