These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 20088566
1. pH-dependent pKa values in proteins--a theoretical analysis of protonation energies with practical consequences for enzymatic reactions. Bombarda E, Ullmann GM. J Phys Chem B; 2010 Feb 11; 114(5):1994-2003. PubMed ID: 20088566 [Abstract] [Full Text] [Related]
2. Characterization of pKa values and titration shifts in the cytotoxic ribonuclease alpha-sarcin by NMR. Relationship between electrostatic interactions, structure, and catalytic function. Pérez-Cañadillas JM, Campos-Olivas R, Lacadena J, Martínez del Pozo A, Gavilanes JG, Santoro J, Rico M, Bruix M. Biochemistry; 1998 Nov 10; 37(45):15865-76. PubMed ID: 9843392 [Abstract] [Full Text] [Related]
3. pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis. MacKerell AD, Sommer MS, Karplus M. J Mol Biol; 1995 Apr 07; 247(4):774-807. PubMed ID: 7723031 [Abstract] [Full Text] [Related]
4. Determination of electrostatic interaction energies and protonation state populations in enzyme active sites. Søndergaard CR, McIntosh LP, Pollastri G, Nielsen JE. J Mol Biol; 2008 Feb 08; 376(1):269-87. PubMed ID: 18155242 [Abstract] [Full Text] [Related]
5. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Joshi MD, Sidhu G, Nielsen JE, Brayer GD, Withers SG, McIntosh LP. Biochemistry; 2001 Aug 28; 40(34):10115-39. PubMed ID: 11513590 [Abstract] [Full Text] [Related]
6. Analyzing enzymatic pH activity profiles and protein titration curves using structure-based pKa calculations and titration curve fitting. Nielsen JE. Methods Enzymol; 2009 Aug 28; 454():233-58. PubMed ID: 19216929 [Abstract] [Full Text] [Related]
7. Dissecting structural and electrostatic interactions of charged groups in alpha-sarcin. An NMR study of some mutants involving the catalytic residues. García-Mayoral MF, Pérez-Cañadillas JM, Santoro J, Ibarra-Molero B, Sanchez-Ruiz JM, Lacadena J, Martínez del Pozo A, Gavilanes JG, Rico M, Bruix M. Biochemistry; 2003 Nov 18; 42(45):13122-33. PubMed ID: 14609322 [Abstract] [Full Text] [Related]
8. On the pH dependence of protein stability. Yang AS, Honig B. J Mol Biol; 1993 May 20; 231(2):459-74. PubMed ID: 8510157 [Abstract] [Full Text] [Related]
9. Characterization of the pH titration shifts of ribonuclease A by one- and two-dimensional nuclear magnetic resonance spectroscopy. Baker WR, Kintanar A. Arch Biochem Biophys; 1996 Mar 01; 327(1):189-99. PubMed ID: 8615690 [Abstract] [Full Text] [Related]
10. Protein-protein binding is often associated with changes in protonation state. Mason AC, Jensen JH. Proteins; 2008 Apr 01; 71(1):81-91. PubMed ID: 17932920 [Abstract] [Full Text] [Related]
11. Characterization of micros-ms dynamics of proteins using a combined analysis of 15N NMR relaxation and chemical shift: conformational exchange in plastocyanin induced by histidine protonations. Hass MA, Thuesen MH, Christensen HE, Led JJ. J Am Chem Soc; 2004 Jan 28; 126(3):753-65. PubMed ID: 14733549 [Abstract] [Full Text] [Related]
18. Acid-base equilibria in rhodopsin: dependence of the protonation state of glu134 on its environment. Periole X, Ceruso MA, Mehler EL. Biochemistry; 2004 Jun 08; 43(22):6858-64. PubMed ID: 15170322 [Abstract] [Full Text] [Related]
20. Kinetics and mechanism of the acid transition of the active site in plastocyanin. Hass MA, Christensen HE, Zhang J, Led JJ. Biochemistry; 2007 Dec 18; 46(50):14619-28. PubMed ID: 18020375 [Abstract] [Full Text] [Related] Page: [Next] [New Search]