These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


246 related items for PubMed ID: 20092825

  • 81. Fabrication of monodisperse polymer nanoparticles by membrane emulsification using ordered anodic porous alumina.
    Yanagishita T, Fujimura R, Nishio K, Masuda H.
    Langmuir; 2010 Feb 02; 26(3):1516-9. PubMed ID: 20000338
    [Abstract] [Full Text] [Related]

  • 82. Selective formation of ordered arrays of octacalcium phosphate ribbons on TiO(2) nanotube surface by template-assisted electrodeposition.
    Lai Y, Huang Y, Wang H, Huang J, Chen Z, Lin C.
    Colloids Surf B Biointerfaces; 2010 Mar 01; 76(1):117-22. PubMed ID: 19900795
    [Abstract] [Full Text] [Related]

  • 83. Bioinspired holographically featured superhydrophobic and supersticky nanostructured materials.
    Park SG, Moon JH, Lee SK, Shim J, Yang SM.
    Langmuir; 2010 Feb 02; 26(3):1468-72. PubMed ID: 19928976
    [Abstract] [Full Text] [Related]

  • 84. Nonaligned carbon nanotubes partially embedded in polymer matrixes: a novel route to superhydrophobic conductive surfaces.
    Peng M, Liao Z, Qi J, Zhou Z.
    Langmuir; 2010 Aug 17; 26(16):13572-8. PubMed ID: 20695606
    [Abstract] [Full Text] [Related]

  • 85. Size control of highly ordered HfO2 nanotube arrays and a possible growth mechanism.
    Qiu X, Howe JY, Cardoso MB, Polat O, Heller WT, Parans Paranthaman M.
    Nanotechnology; 2009 Nov 11; 20(45):455601. PubMed ID: 19822933
    [Abstract] [Full Text] [Related]

  • 86. One-step hydrothermal creation of hierarchical microstructures toward superhydrophilic and superhydrophobic surfaces.
    Liu X, He J.
    Langmuir; 2009 Oct 06; 25(19):11822-6. PubMed ID: 19788228
    [Abstract] [Full Text] [Related]

  • 87. Development of a fluorinated polyimide hollow fiber for medical devices.
    Kawakami H, Kanamori T, Kubota S.
    J Artif Organs; 2003 Oct 06; 6(2):124-9. PubMed ID: 14598113
    [Abstract] [Full Text] [Related]

  • 88. Bioactive SrTiO(3) nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants.
    Xin Y, Jiang J, Huo K, Hu T, Chu PK.
    ACS Nano; 2009 Oct 27; 3(10):3228-34. PubMed ID: 19736918
    [Abstract] [Full Text] [Related]

  • 89. Novel three-dimensional nanoporous alumina as a template for hierarchical TiO2 nanotube arrays.
    Wang D, Zhang L, Lee W, Knez M, Liu L.
    Small; 2013 Apr 08; 9(7):1025-9. PubMed ID: 23208978
    [Abstract] [Full Text] [Related]

  • 90. Simultaneous fabrication of superhydrophobic and superhydrophilic polyimide surfaces with low hysteresis.
    Scheen G, Ziouche K, Bougrioua Z, Godts P, Leclercq D, Lasri T.
    Langmuir; 2011 May 17; 27(10):6490-5. PubMed ID: 21520916
    [Abstract] [Full Text] [Related]

  • 91. One-step coating of fluoro-containing silica nanoparticles for universal generation of surface superhydrophobicity.
    Wang H, Fang J, Cheng T, Ding J, Qu L, Dai L, Wang X, Lin T.
    Chem Commun (Camb); 2008 Feb 21; (7):877-9. PubMed ID: 18253534
    [Abstract] [Full Text] [Related]

  • 92. A simple way to achieve pattern-dependent tunable adhesion in superhydrophobic surfaces by a femtosecond laser.
    Zhang D, Chen F, Yang Q, Yong J, Bian H, Ou Y, Si J, Meng X, Hou X.
    ACS Appl Mater Interfaces; 2012 Sep 26; 4(9):4905-12. PubMed ID: 22909564
    [Abstract] [Full Text] [Related]

  • 93. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.
    Li L, Huang T, Lei J, He J, Qu L, Huang P, Zhou W, Li N, Pan F.
    ACS Appl Mater Interfaces; 2015 Jan 28; 7(3):1449-57. PubMed ID: 25545550
    [Abstract] [Full Text] [Related]

  • 94.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 95. Novel method for controllable fabrication of a superhydrophobic CuO surface on AZ91D magnesium alloy.
    She Z, Li Q, Wang Z, Li L, Chen F, Zhou J.
    ACS Appl Mater Interfaces; 2012 Aug 28; 4(8):4348-56. PubMed ID: 22845176
    [Abstract] [Full Text] [Related]

  • 96. Self-assembly of a donor-acceptor nanotube. A strategy to create bicontinuous arrays.
    Tu S, Kim SH, Joseph J, Modarelli DA, Parquette JR.
    J Am Chem Soc; 2011 Nov 30; 133(47):19125-30. PubMed ID: 22004360
    [Abstract] [Full Text] [Related]

  • 97. Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: a possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle.
    Wang S, Li Y, Fei X, Sun M, Zhang C, Li Y, Yang Q, Hong X.
    J Colloid Interface Sci; 2011 Jul 15; 359(2):380-8. PubMed ID: 21536296
    [Abstract] [Full Text] [Related]

  • 98. Drying of colloidal droplets on superhydrophobic surfaces.
    Chen L, Evans JR.
    J Colloid Interface Sci; 2010 Nov 01; 351(1):283-7. PubMed ID: 20692671
    [Abstract] [Full Text] [Related]

  • 99. Surface modification of polyimide sheets for regenerative medicine applications.
    Van Vlierberghe S, Sirova M, Rossmann P, Thielecke H, Boterberg V, Rihova B, Schacht E, Dubruel P.
    Biomacromolecules; 2010 Oct 11; 11(10):2731-9. PubMed ID: 20831199
    [Abstract] [Full Text] [Related]

  • 100. Exceptional superhydrophobicity and low velocity impact icephobicity of acetone-functionalized carbon nanotube films.
    Zheng L, Li Z, Bourdo S, Khedir KR, Asar MP, Ryerson CC, Biris AS.
    Langmuir; 2011 Aug 16; 27(16):9936-43. PubMed ID: 21740070
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.