These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


115 related items for PubMed ID: 20097163

  • 1. Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis.
    Aiassa V, Barnes AI, Albesa I.
    Biochem Biophys Res Commun; 2010 Feb 26; 393(1):84-8. PubMed ID: 20097163
    [Abstract] [Full Text] [Related]

  • 2. Sublethal ciprofloxacin treatment leads to resistance via antioxidant systems in Proteus mirabilis.
    Aiassa V, Barnes AI, Smania AM, Albesa I.
    FEMS Microbiol Lett; 2012 Feb 26; 327(1):25-32. PubMed ID: 22092852
    [Abstract] [Full Text] [Related]

  • 3. Macromolecular oxidation in planktonic population and biofilms of Proteus mirabilis exposed to ciprofloxacin.
    Aiassa V, Barnes AI, Albesa I.
    Cell Biochem Biophys; 2014 Jan 26; 68(1):49-54. PubMed ID: 23771722
    [Abstract] [Full Text] [Related]

  • 4. Oxidative stress involved in the antibacterial action of different antibiotics.
    Albesa I, Becerra MC, Battán PC, Páez PL.
    Biochem Biophys Res Commun; 2004 Apr 30; 317(2):605-9. PubMed ID: 15063800
    [Abstract] [Full Text] [Related]

  • 5. Antimicrobial activities against biofilm formed by Proteus mirabilis isolates from wound and urinary tract infections.
    Wasfi R, Abd El-Rahman OA, Mansour LE, Hanora AS, Hashem AM, Ashour MS.
    Indian J Med Microbiol; 2012 Apr 30; 30(1):76-80. PubMed ID: 22361765
    [Abstract] [Full Text] [Related]

  • 6. In vitro activity of ciprofloxacin, moxifloxacin, vancomycin and erythromycin against planktonic and biofilm forms of Corynebacterium urealyticum.
    Soriano F, Huelves L, Naves P, Rodríguez-Cerrato V, del Prado G, Ruiz V, Ponte C.
    J Antimicrob Chemother; 2009 Feb 30; 63(2):353-6. PubMed ID: 19056748
    [Abstract] [Full Text] [Related]

  • 7. Light effect and reactive oxygen species in the action of ciprofloxacin on Staphylococcus aureus.
    Becerra MC, Sarmiento M, Páez PL, Argüello G, Albesa I.
    J Photochem Photobiol B; 2004 Oct 25; 76(1-3):13-8. PubMed ID: 15488711
    [Abstract] [Full Text] [Related]

  • 8. Antioxidative mechanisms protect resistant strains of Staphylococcus aureus against ciprofloxacin oxidative damage.
    Páez PL, Becerra MC, Albesa I.
    Fundam Clin Pharmacol; 2010 Dec 25; 24(6):771-6. PubMed ID: 20412315
    [Abstract] [Full Text] [Related]

  • 9. Clinical epidemiology of ciprofloxacin-resistant Proteus mirabilis isolated from urine samples of hospitalised patients.
    Saito R, Okugawa S, Kumita W, Sato K, Chida T, Okamura N, Moriya K, Koike K.
    Clin Microbiol Infect; 2007 Dec 25; 13(12):1204-6. PubMed ID: 17850340
    [Abstract] [Full Text] [Related]

  • 10. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.
    Kwiecińska-Piróg J, Bogiel T, Gospodarek E.
    J Antibiot (Tokyo); 2013 Oct 25; 66(10):593-7. PubMed ID: 23801185
    [Abstract] [Full Text] [Related]

  • 11. Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment.
    Verma V, Harjai K, Chhibber S.
    J Antimicrob Chemother; 2009 Dec 25; 64(6):1212-8. PubMed ID: 19808232
    [Abstract] [Full Text] [Related]

  • 12. Resistance to oxidative stress caused by ceftazidime and piperacillin in a biofilm of Pseudomonas.
    Battán PC, Barnes AI, Albesa I.
    Luminescence; 2004 Dec 25; 19(5):265-70. PubMed ID: 15386799
    [Abstract] [Full Text] [Related]

  • 13. Effects of iron depletion on antimicrobial activities against planktonic and biofilm Pseudomonas aeruginosa.
    Cai Y, Yu XH, Wang R, An MM, Liang BB.
    J Pharm Pharmacol; 2009 Sep 25; 61(9):1257-62. PubMed ID: 19703377
    [Abstract] [Full Text] [Related]

  • 14. Differences in biofilm and planktonic cell mediated reduction of metalloid oxyanions.
    Harrison JJ, Ceri H, Stremick C, Turner RJ.
    FEMS Microbiol Lett; 2004 Jun 15; 235(2):357-62. PubMed ID: 15183885
    [Abstract] [Full Text] [Related]

  • 15. Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms.
    Ahmed MN, Porse A, Abdelsamad A, Sommer M, Høiby N, Ciofu O.
    Antimicrob Agents Chemother; 2019 Oct 15; 63(10):. PubMed ID: 31307984
    [Abstract] [Full Text] [Related]

  • 16. Differences in the in vitro susceptibility of planktonic and biofilm-associated Escherichia coli strains to antimicrobial agents.
    Naves P, Del Prado G, Ponte C, Soriano F.
    J Chemother; 2010 Oct 15; 22(5):312-7. PubMed ID: 21123153
    [Abstract] [Full Text] [Related]

  • 17. Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin.
    Ahmed MN, Porse A, Sommer MOA, Høiby N, Ciofu O.
    Antimicrob Agents Chemother; 2018 Aug 15; 62(8):. PubMed ID: 29760140
    [Abstract] [Full Text] [Related]

  • 18. Survival strategies of infectious biofilms.
    Fux CA, Costerton JW, Stewart PS, Stoodley P.
    Trends Microbiol; 2005 Jan 15; 13(1):34-40. PubMed ID: 15639630
    [Abstract] [Full Text] [Related]

  • 19. Susceptibility of different phases of biofilm of Klebsiella pneumoniae to three different antibiotics.
    Singla S, Harjai K, Chhibber S.
    J Antibiot (Tokyo); 2013 Feb 15; 66(2):61-6. PubMed ID: 23168403
    [Abstract] [Full Text] [Related]

  • 20. Differences in metabolism between the biofilm and planktonic response to metal stress.
    Booth SC, Workentine ML, Wen J, Shaykhutdinov R, Vogel HJ, Ceri H, Turner RJ, Weljie AM.
    J Proteome Res; 2011 Jul 01; 10(7):3190-9. PubMed ID: 21561166
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.