These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


309 related items for PubMed ID: 20100552

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Influence of primary crystallisation conditions on the mechanical and interfacial properties of micronised budesonide for dry powder inhalation.
    Kubavat HA, Shur J, Ruecroft G, Hipkiss D, Price R.
    Int J Pharm; 2012 Jul 01; 430(1-2):26-33. PubMed ID: 22449413
    [Abstract] [Full Text] [Related]

  • 4. Investigations on the Mechanism of Magnesium Stearate to Modify Aerosol Performance in Dry Powder Inhaled Formulations.
    Jetzer MW, Schneider M, Morrical BD, Imanidis G.
    J Pharm Sci; 2018 Apr 01; 107(4):984-998. PubMed ID: 29247741
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. The role of fines in the modification of the fluidization and dispersion mechanism within dry powder inhaler formulations.
    Shur J, Harris H, Jones MD, Kaerger JS, Price R.
    Pharm Res; 2008 Jul 01; 25(7):1631-40. PubMed ID: 18239861
    [Abstract] [Full Text] [Related]

  • 9. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying.
    Saboti D, Maver U, Chan HK, Planinšek O.
    J Pharm Sci; 2017 Jul 01; 106(7):1881-1888. PubMed ID: 28285981
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Defining the critical material attributes of lactose monohydrate in carrier based dry powder inhaler formulations using artificial neural networks.
    Kinnunen H, Hebbink G, Peters H, Shur J, Price R.
    AAPS PharmSciTech; 2014 Aug 01; 15(4):1009-20. PubMed ID: 24831088
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers.
    Schiavone H, Palakodaty S, Clark A, York P, Tzannis ST.
    Int J Pharm; 2004 Aug 20; 281(1-2):55-66. PubMed ID: 15288343
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Humidity-induced changes of the aerodynamic properties of dry powder aerosol formulations containing different carriers.
    Zeng XM, MacRitchie HB, Marriott C, Martin GP.
    Int J Pharm; 2007 Mar 21; 333(1-2):45-55. PubMed ID: 17064863
    [Abstract] [Full Text] [Related]

  • 17. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ, Jain RR, Soni PS, Abdul S, Darshana H, Gaikwad RV, Menon MD.
    J Aerosol Med Pulm Drug Deliv; 2015 Aug 21; 28(4):254-67. PubMed ID: 25517187
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Effect of milling and sieving on functionality of dry powder inhalation products.
    Steckel H, Markefka P, teWierik H, Kammelar R.
    Int J Pharm; 2006 Feb 17; 309(1-2):51-9. PubMed ID: 16377105
    [Abstract] [Full Text] [Related]

  • 20. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance.
    Cordts E, Steckel H.
    Eur J Pharm Biopharm; 2012 Oct 17; 82(2):417-23. PubMed ID: 22902789
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.