These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
660 related items for PubMed ID: 20100593
1. The influence of reduced glutathione on chromosome damage induced by X-rays or heavy ion beams of different LETs and on the interaction of DNA lesions induced by radiations and bleomycin. Pujari G, Sarma A, Chatterjee A. Mutat Res; 2010 Feb; 696(2):154-9. PubMed ID: 20100593 [Abstract] [Full Text] [Related]
2. Genetic and cytogenetic markers of exposure to high-linear energy transfer radiation. Schwartz JL, Hsie AW. Radiat Res; 1997 Nov; 148(5 Suppl):S87-92. PubMed ID: 9355861 [Abstract] [Full Text] [Related]
3. Differing effects of T4 DNA ligase in the modulation of the damage induced in mammalian cells by either X-rays or restriction endonucleases. Ortiz T, Piñero J. Chemotherapy; 2007 Nov; 53(1):14-20. PubMed ID: 17192708 [Abstract] [Full Text] [Related]
4. Analysis of complex DNA lesions generated by heavy ion beams. Terato H, Tanaka R, Nakaarai Y, Hirayama R, Furusawa Y, Ide H. Nucleic Acids Symp Ser (Oxf); 2007 Nov; (51):221-2. PubMed ID: 18029666 [Abstract] [Full Text] [Related]
5. Influence of track directions on the biological consequences in cells irradiated with high LET heavy ions. Fujii Y, Yurkon CR, Maeda J, Genet SC, Okayasu R, Kitamura H, Fujimori A, Kato TA. Int J Radiat Biol; 2013 Jun; 89(6):401-10. PubMed ID: 23363030 [Abstract] [Full Text] [Related]
6. Complex exchanges are responsible for the increased effectiveness of C-ions compared to X-rays at the first post-irradiation mitosis. Lee R, Sommer S, Hartel C, Nasonova E, Durante M, Ritter S. Mutat Res; 2010 Aug 14; 701(1):52-9. PubMed ID: 20298802 [Abstract] [Full Text] [Related]
7. Cell killing, nuclear damage and apoptosis in Chinese hamster V79 cells after irradiation with heavy-ion beams of (16)O, (12)C and (7)Li. Pathak R, Dey SK, Sarma A, Khuda-Bukhsh AR. Mutat Res; 2007 Aug 15; 632(1-2):58-68. PubMed ID: 17532254 [Abstract] [Full Text] [Related]
8. Influence of reduced glutathione on end-joining of DNA double-strand breaks: Cytogenetical and molecular approach. Ghoshal N, Sharma S, Banerjee A, Kurkalang S, Raghavan SC, Chatterjee A. Mutat Res; 2017 Jan 15; 795():1-9. PubMed ID: 27883910 [Abstract] [Full Text] [Related]
9. Relative biological effectiveness of high linear energy transfer α-particles for the induction of DNA-double-strand breaks, chromosome aberrations and reproductive cell death in SW-1573 lung tumour cells. Franken NA, Hovingh S, Ten Cate R, Krawczyk P, Stap J, Hoebe R, Aten J, Barendsen GW. Oncol Rep; 2012 Mar 15; 27(3):769-74. PubMed ID: 22200791 [Abstract] [Full Text] [Related]
10. Comparison of the bromodeoxyuridine-mediated sensitization effects between low-LET and high-LET ionizing radiation on DNA double-strand breaks. Fujii Y, Genet MD, Roybal EJ, Kubota N, Okayasu R, Miyagawa K, Fujimori A, Kato TA. Oncol Rep; 2013 Jun 15; 29(6):2133-9. PubMed ID: 23525528 [Abstract] [Full Text] [Related]
11. Interaction of radiation- and bleomycin-induced lesions and influence of glutathione level on the interaction. Dutta A, Chakraborty A, Saha A, Ray S, Chatterjee A. Mutagenesis; 2005 Sep 15; 20(5):329-35. PubMed ID: 16014360 [Abstract] [Full Text] [Related]
12. Constancy of the relative biological effectiveness of 42 MeV (p-->Be+) neutrons among cell lines with different DNA repair proficiencies. Britten RA, Murray D. Radiat Res; 1997 Oct 15; 148(4):308-16. PubMed ID: 9339946 [Abstract] [Full Text] [Related]
13. Induction and rejoining of DNA double-strand breaks in Chinese hamster V79-4 cells irradiated with characteristic aluminum K and copper L ultrasoft X rays. Botchway SW, Stevens DL, Hill MA, Jenner TJ, O'Neill P. Radiat Res; 1997 Oct 15; 148(4):317-24. PubMed ID: 9339947 [Abstract] [Full Text] [Related]
14. High LET heavy ion radiation induces lower numbers of initial chromosome breaks with minimal repair than low LET radiation in normal human cells. Sekine E, Okada M, Matsufuji N, Yu D, Furusawa Y, Okayasu R. Mutat Res; 2008 Mar 29; 652(1):95-101. PubMed ID: 18314380 [Abstract] [Full Text] [Related]
15. Repair of DNA damage induced by accelerated heavy ions--a mini review. Okayasu R. Int J Cancer; 2012 Mar 01; 130(5):991-1000. PubMed ID: 21935920 [Abstract] [Full Text] [Related]
16. Influence of glutathione levels on radiation-induced chromosomal DNA damage and repair in human peripheral lymphocytes. Pujari G, Berni A, Palitti F, Chatterjee A. Mutat Res; 2009 Apr 30; 675(1-2):23-8. PubMed ID: 19386243 [Abstract] [Full Text] [Related]
17. Impact of radiation quality on the spectrum of induced chromosome exchange aberrations. Boei JJ, Vermeulen S, Mullenders LH, Natarajan AT. Int J Radiat Biol; 2001 Aug 30; 77(8):847-57. PubMed ID: 11571018 [Abstract] [Full Text] [Related]
18. Radiation-induced epigenetic alterations after low and high LET irradiations. Aypar U, Morgan WF, Baulch JE. Mutat Res; 2011 Feb 10; 707(1-2):24-33. PubMed ID: 21159317 [Abstract] [Full Text] [Related]
19. Chromosome aberrations in normal human fibroblasts analyzed in G0/G1 and G2/M phases after exposure in G0 to radiation with different linear energy transfer (LET). Liu C, Kawata T, Furusawa Y, Zhou G, Inoue K, Fukada J, Kota R, George K, Cucinotta F, Okayasu R. Mutat Res; 2013 Aug 30; 756(1-2):101-7. PubMed ID: 23688614 [Abstract] [Full Text] [Related]
20. Repair of clustered DNA damage caused by high LET radiation in human fibroblasts. Rydberg B, Lobrich M, Cooper PK. Phys Med; 1998 Jul 30; 14 Suppl 1():24-8. PubMed ID: 11542637 [Abstract] [Full Text] [Related] Page: [Next] [New Search]