These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Induced deficits in speed perception by transcranial magnetic stimulation of human cortical areas V5/MT+ and V3A. McKeefry DJ, Burton MP, Vakrou C, Barrett BT, Morland AB. J Neurosci; 2008 Jul 02; 28(27):6848-57. PubMed ID: 18596160 [Abstract] [Full Text] [Related]
3. The role of human brain area hMT+ in the perception of global motion investigated with repetitive transcranial magnetic stimulation (rTMS). Kaderali S, Kim YJ, Reynaud A, Mullen KT. Brain Stimul; 2015 Jul 02; 8(2):200-7. PubMed ID: 25440579 [Abstract] [Full Text] [Related]
5. The contribution of color to global motion processing. Michna ML, Mullen KT. J Vis; 2008 May 23; 8(5):10.1-12. PubMed ID: 18842081 [Abstract] [Full Text] [Related]
6. The perception of speed based on L-M and S-(L+M) cone opponent processing. McKeefry DJ, Burton MP. Vision Res; 2009 Mar 23; 49(8):870-6. PubMed ID: 19285523 [Abstract] [Full Text] [Related]
7. Misperceptions of speed for chromatic and luminance grating stimuli. Burton MP, McKeefry DJ. Vision Res; 2007 May 23; 47(11):1504-17. PubMed ID: 17395238 [Abstract] [Full Text] [Related]
8. Temporal frequency and chromatic processing in humans: an fMRI study of the cortical visual areas. D'Souza DV, Auer T, Strasburger H, Frahm J, Lee BB. J Vis; 2011 Jul 13; 11(8):. PubMed ID: 21752924 [Abstract] [Full Text] [Related]
9. Psychophysical and rTMS Evidence for the Presence of Motion Opponency in Human V5. Thompson B, Deblieck C, Wu A, Iacoboni M, Liu Z. Brain Stimul; 2016 Jul 13; 9(6):876-881. PubMed ID: 27342938 [Abstract] [Full Text] [Related]
10. The influence of stimulus chromaticity on the isoluminant motion-onset VEP. McKeefry DJ. Vision Res; 2002 Mar 13; 42(7):909-22. PubMed ID: 11927355 [Abstract] [Full Text] [Related]
13. Disruptions to human speed perception induced by motion adaptation and transcranial magnetic stimulation. Burton MP, McKeefry DJ, Barrett BT, Vakrou C, Morland AB. Eur J Neurosci; 2009 Nov 13; 30(10):1989-98. PubMed ID: 19912329 [Abstract] [Full Text] [Related]
14. Responses of the human visual cortex and LGN to achromatic and chromatic temporal modulations: an fMRI study. Mullen KT, Thompson B, Hess RF. J Vis; 2010 Nov 24; 10(13):13. PubMed ID: 21106678 [Abstract] [Full Text] [Related]
15. Specializations for chromatic and temporal signals in human visual cortex. Liu J, Wandell BA. J Neurosci; 2005 Mar 30; 25(13):3459-68. PubMed ID: 15800201 [Abstract] [Full Text] [Related]
16. What happens if it changes color when it moves?: the nature of chromatic input to macaque visual area MT. Dobkins KR, Albright TD. J Neurosci; 1994 Aug 30; 14(8):4854-70. PubMed ID: 8046456 [Abstract] [Full Text] [Related]
17. The role of human extra-striate visual areas V5/MT and V2/V3 in the perception of the direction of global motion: a transcranial magnetic stimulation study. Cowey A, Campana G, Walsh V, Vaina LM. Exp Brain Res; 2006 Jun 30; 171(4):558-62. PubMed ID: 16708244 [Abstract] [Full Text] [Related]
18. A Direct Demonstration of Functional Differences between Subdivisions of Human V5/MT. Strong SL, Silson EH, Gouws AD, Morland AB, McKeefry DJ. Cereb Cortex; 2017 Jan 01; 27(1):1-10. PubMed ID: 28365777 [Abstract] [Full Text] [Related]
19. The perceived speed of drifting chromatic gratings is mechanism-dependent. Nguyen-Tri D, Faubert J. Vision Res; 2002 Aug 01; 42(17):2073-9. PubMed ID: 12169426 [Abstract] [Full Text] [Related]
20. A double dissociation between striate and extrastriate visual cortex for pattern motion perception revealed using rTMS. Thompson B, Aaen-Stockdale C, Koski L, Hess RF. Hum Brain Mapp; 2009 Oct 01; 30(10):3115-26. PubMed ID: 19224619 [Abstract] [Full Text] [Related] Page: [Next] [New Search]