These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


94 related items for PubMed ID: 20112984

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Mechanism of benzylic hydroxylation by 4-hydroxymandelate synthase. A computational study.
    Wójcik A, Broclawik E, Siegbahn PE, Borowski T.
    Biochemistry; 2012 Nov 27; 51(47):9570-80. PubMed ID: 23126679
    [Abstract] [Full Text] [Related]

  • 7. The Interaction of Hydroxymandelate Synthase with the 4-Hydroxyphenylpyruvate Dioxygenase Inhibitor: NTBC.
    Conrad JA, Moran GR.
    Inorganica Chim Acta; 2008 Mar 27; 361(4):1197-1201. PubMed ID: 18496607
    [Abstract] [Full Text] [Related]

  • 8. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM, Ballou DP, Whittaker JW.
    Biochemistry; 1998 Jun 09; 37(23):8426-36. PubMed ID: 9622494
    [Abstract] [Full Text] [Related]

  • 9. Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2.
    Guengerich FP, Krauser JA, Johnson WW.
    Biochemistry; 2004 Aug 24; 43(33):10775-88. PubMed ID: 15311939
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U, Ranguelova K, Kappl R, Hüttermann J, Fetzner S.
    Biochemistry; 2004 Nov 16; 43(45):14485-99. PubMed ID: 15533053
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL, Villa JP, McDevitt P, McQueney MS, Thrall SH, Meek TD.
    Biochemistry; 2008 Aug 19; 47(33):8697-710. PubMed ID: 18656960
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Substrate specificity and kinetic isotope effect analysis of the Eschericia coli ketopantoate reductase.
    Zheng R, Blanchard JS.
    Biochemistry; 2003 Sep 30; 42(38):11289-96. PubMed ID: 14503879
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and evidence for the proposed benzene oxide intermediate in homogentisate formation.
    Gunsior M, Ravel J, Challis GL, Townsend CA.
    Biochemistry; 2004 Jan 27; 43(3):663-74. PubMed ID: 14730970
    [Abstract] [Full Text] [Related]

  • 19. Mechanistic studies with 2-C-methyl-D-erythritol 4-phosphate synthase from Escherichia coli.
    Fox DT, Poulter CD.
    Biochemistry; 2005 Jun 14; 44(23):8360-8. PubMed ID: 15938625
    [Abstract] [Full Text] [Related]

  • 20. Reaction coordinate analysis for beta-diketone cleavage by the non-heme Fe2+-dependent dioxygenase Dke1.
    Straganz GD, Nidetzky B.
    J Am Chem Soc; 2005 Sep 07; 127(35):12306-14. PubMed ID: 16131208
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.