These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
224 related items for PubMed ID: 20118353
1. Prevalence of Bacillus anthracis-like organisms and bacteriophages in the intestinal tract of the earthworm Eisenia fetida. Schuch R, Pelzek AJ, Kan S, Fischetti VA. Appl Environ Microbiol; 2010 Apr; 76(7):2286-94. PubMed ID: 20118353 [Abstract] [Full Text] [Related]
2. The PlyB Endolysin of Bacteriophage vB_BanS_Bcp1 Exhibits Broad-Spectrum Bactericidal Activity against Bacillus cereus Sensu Lato Isolates. Schuch R, Pelzek AJ, Nelson DC, Fischetti VA. Appl Environ Microbiol; 2019 May 01; 85(9):. PubMed ID: 30850428 [Abstract] [Full Text] [Related]
3. Identification and characterization of a novel Geobacillus thermoglucosidasius bacteriophage, GVE3. van Zyl LJ, Sunda F, Taylor MP, Cowan DA, Trindade MI. Arch Virol; 2015 Sep 01; 160(9):2269-82. PubMed ID: 26123922 [Abstract] [Full Text] [Related]
5. Detailed genomic analysis of the Wbeta and gamma phages infecting Bacillus anthracis: implications for evolution of environmental fitness and antibiotic resistance. Schuch R, Fischetti VA. J Bacteriol; 2006 Apr 01; 188(8):3037-51. PubMed ID: 16585764 [Abstract] [Full Text] [Related]
6. Characterization and comparative genomic analysis of bacteriophages infecting members of the Bacillus cereus group. Lee JH, Shin H, Ryu S. Arch Virol; 2014 May 01; 159(5):871-84. PubMed ID: 24264384 [Abstract] [Full Text] [Related]
7. Genome sequence of Bacillus anthracis typing phage AP631. Liu X, Wang D, Pan C, Feng E, Fan H, Li M, Zhu L, Tong Y, Wang H. Arch Virol; 2019 Mar 01; 164(3):917-921. PubMed ID: 30666457 [Abstract] [Full Text] [Related]
8. Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis. Daffonchio D, Raddadi N, Merabishvili M, Cherif A, Carmagnola L, Brusetti L, Rizzi A, Chanishvili N, Visca P, Sharp R, Borin S. Appl Environ Microbiol; 2006 Feb 01; 72(2):1295-301. PubMed ID: 16461679 [Abstract] [Full Text] [Related]
9. Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus. Kong M, Ryu S. Appl Environ Microbiol; 2015 Apr 01; 81(7):2274-83. PubMed ID: 25595773 [Abstract] [Full Text] [Related]
10. Gamma-phage lysin PlyG sequence-based synthetic peptides coupled with Qdot-nanocrystals are useful for developing detection methods for Bacillus anthracis by using its surrogates, B. anthracis-Sterne and B. cereus-4342. Sainathrao S, Mohan KV, Atreya C. BMC Biotechnol; 2009 Jul 22; 9():67. PubMed ID: 19624851 [Abstract] [Full Text] [Related]
11. The odd one out: Bacillus ACT bacteriophage CP-51 exhibits unusual properties compared to related Spounavirinae W.Ph. and Bastille. Klumpp J, Schmuki M, Sozhamannan S, Beyer W, Fouts DE, Bernbach V, Calendar R, Loessner MJ. Virology; 2014 Aug 22; 462-463():299-308. PubMed ID: 25010479 [Abstract] [Full Text] [Related]
12. Identification and characterization of two Bacillus anthracis bacteriophages. Li L, Zhang H, Jin H, Guo J, Liu P, Yang J, Wang Z, Zhang E, Yu B, Shi L, He J, Wang P, Wei J, Zhong Y, Li W. Arch Virol; 2024 Jun 05; 169(7):134. PubMed ID: 38834736 [Abstract] [Full Text] [Related]
13. Polyphasic characterization of Bacillus species from anthrax outbreaks in animals from South Africa and Lesotho. Lekota KE, Hassim A, Mafofo J, Rees J, Muchadeyi FC, Van Heerden H, Madoroba E. J Infect Dev Ctries; 2016 Aug 31; 10(8):814-23. PubMed ID: 27580326 [Abstract] [Full Text] [Related]
14. Isolation and Characterization of Bacillus cereus Bacteriophages from Foods and Soil. Oh H, Seo DJ, Jeon SB, Park H, Jeong S, Chun HS, Oh M, Choi C. Food Environ Virol; 2017 Sep 31; 9(3):260-269. PubMed ID: 28205130 [Abstract] [Full Text] [Related]
15. Comparative analysis of Bacillus anthracis, Bacillus cereus, and related species on the basis of reverse transcriptase sequencing of 16S rRNA. Ash C, Farrow JA, Dorsch M, Stackebrandt E, Collins MD. Int J Syst Bacteriol; 1991 Jul 31; 41(3):343-6. PubMed ID: 1715736 [Abstract] [Full Text] [Related]
16. Poly-γ-(D)-glutamic acid capsule interferes with lytic infection of Bacillus anthracis by B. anthracis-specific bacteriophages. Negus D, Burton J, Sweed A, Gryko R, Taylor PW. Appl Environ Microbiol; 2013 Jan 31; 79(2):714-7. PubMed ID: 23124233 [Abstract] [Full Text] [Related]
17. Rapid genotypic detection of Bacillus anthracis and the Bacillus cereus group by multiplex real-time PCR melting curve analysis. Kim K, Seo J, Wheeler K, Park C, Kim D, Park S, Kim W, Chung SI, Leighton T. FEMS Immunol Med Microbiol; 2005 Feb 01; 43(2):301-10. PubMed ID: 15681162 [Abstract] [Full Text] [Related]
18. DnaJ sequences of Bacillus cereus strains isolated from outbreaks of hospital infection are highly similar to Bacillus anthracis. Zhang J, van Hung P, Hayashi M, Yoshida S, Ohkusu K, Ezaki T. Diagn Microbiol Infect Dis; 2011 Jul 01; 70(3):307-15. PubMed ID: 21683265 [Abstract] [Full Text] [Related]
19. A novel multiplex PCR discriminates Bacillus anthracis and its genetically related strains from other Bacillus cereus group species. Ogawa H, Fujikura D, Ohnuma M, Ohnishi N, Hang'ombe BM, Mimuro H, Ezaki T, Mweene AS, Higashi H. PLoS One; 2015 Jul 01; 10(3):e0122004. PubMed ID: 25774512 [Abstract] [Full Text] [Related]
20. Identification and classification of bcl genes and proteins of Bacillus cereus group organisms and their application in Bacillus anthracis detection and fingerprinting. Leski TA, Caswell CC, Pawlowski M, Klinke DJ, Bujnicki JM, Hart SJ, Lukomski S. Appl Environ Microbiol; 2009 Nov 01; 75(22):7163-72. PubMed ID: 19767469 [Abstract] [Full Text] [Related] Page: [Next] [New Search]