These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 20122144

  • 1. Comparative evolutionary analysis of protein complexes in E. coli and yeast.
    Reid AJ, Ranea JA, Orengo CA.
    BMC Genomics; 2010 Feb 01; 11():79. PubMed ID: 20122144
    [Abstract] [Full Text] [Related]

  • 2. Evolutionary rate heterogeneity of core and attachment proteins in yeast protein complexes.
    Chakraborty S, Ghosh TC.
    Genome Biol Evol; 2013 Feb 01; 5(7):1366-75. PubMed ID: 23814130
    [Abstract] [Full Text] [Related]

  • 3. Detection of overlapping protein complexes in gene expression, phenotype and pathways of Saccharomyces cerevisiae using Prorank based Fuzzy algorithm.
    Manikandan P, Ramyachitra D, Banupriya D.
    Gene; 2016 Apr 15; 580(2):144-158. PubMed ID: 26809099
    [Abstract] [Full Text] [Related]

  • 4. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.
    Theofilatos K, Pavlopoulou N, Papasavvas C, Likothanassis S, Dimitrakopoulos C, Georgopoulos E, Moschopoulos C, Mavroudi S.
    Artif Intell Med; 2015 Mar 15; 63(3):181-9. PubMed ID: 25765008
    [Abstract] [Full Text] [Related]

  • 5. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J, Qi Y.
    PLoS One; 2015 Mar 15; 10(6):e0131418. PubMed ID: 26125187
    [Abstract] [Full Text] [Related]

  • 6. Comparison of the small molecule metabolic enzymes of Escherichia coli and Saccharomyces cerevisiae.
    Jardine O, Gough J, Chothia C, Teichmann SA.
    Genome Res; 2002 Jun 15; 12(6):916-29. PubMed ID: 12045145
    [Abstract] [Full Text] [Related]

  • 7. Higher-order genomic organization of cellular functions in yeast.
    Tuller T, Rubinstein U, Bar D, Gurevitch M, Ruppin E, Kupiec M.
    J Comput Biol; 2009 Feb 15; 16(2):303-16. PubMed ID: 19193148
    [Abstract] [Full Text] [Related]

  • 8. Comparative assessment of performance and genome dependence among phylogenetic profiling methods.
    Snitkin ES, Gustafson AM, Mellor J, Wu J, DeLisi C.
    BMC Bioinformatics; 2006 Sep 27; 7():420. PubMed ID: 17005048
    [Abstract] [Full Text] [Related]

  • 9. Evolutionary cores of domain co-occurrence networks.
    Wuchty S, Almaas E.
    BMC Evol Biol; 2005 Mar 23; 5():24. PubMed ID: 15788102
    [Abstract] [Full Text] [Related]

  • 10. A survey of computational methods for protein complex prediction from protein interaction networks.
    Srihari S, Leong HW.
    J Bioinform Comput Biol; 2013 Apr 23; 11(2):1230002. PubMed ID: 23600810
    [Abstract] [Full Text] [Related]

  • 11. A complex-centric view of protein network evolution.
    Yosef N, Kupiec M, Ruppin E, Sharan R.
    Nucleic Acids Res; 2009 Jul 23; 37(12):e88. PubMed ID: 19465379
    [Abstract] [Full Text] [Related]

  • 12. Similarities and differences in genome-wide expression data of six organisms.
    Bergmann S, Ihmels J, Barkai N.
    PLoS Biol; 2004 Jan 23; 2(1):E9. PubMed ID: 14737187
    [Abstract] [Full Text] [Related]

  • 13. A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution.
    Harrison P, Kumar A, Lan N, Echols N, Snyder M, Gerstein M.
    J Mol Biol; 2002 Feb 22; 316(3):409-19. PubMed ID: 11866506
    [Abstract] [Full Text] [Related]

  • 14. Rescuing an essential enzyme-RNA complex with a non-essential appended domain.
    Whelihan EF, Schimmel P.
    EMBO J; 1997 May 15; 16(10):2968-74. PubMed ID: 9184240
    [Abstract] [Full Text] [Related]

  • 15. Network motif-based analysis of regulatory patterns in paralogous gene pairs.
    Melkus G, Rucevskis P, Celms E, Čerāns K, Freivalds K, Kikusts P, Lace L, Opmanis M, Rituma D, Viksna J.
    J Bioinform Comput Biol; 2020 Jun 15; 18(3):2040008. PubMed ID: 32698721
    [Abstract] [Full Text] [Related]

  • 16. Genetic structure and evolution of the Vps25 family, a yeast ESCRT-II component.
    Slater R, Bishop NE.
    BMC Evol Biol; 2006 Aug 04; 6():59. PubMed ID: 16889659
    [Abstract] [Full Text] [Related]

  • 17. Prevalent structural disorder in E. coli and S. cerevisiae proteomes.
    Tompa P, Dosztanyi Z, Simon I.
    J Proteome Res; 2006 Aug 04; 5(8):1996-2000. PubMed ID: 16889422
    [Abstract] [Full Text] [Related]

  • 18. Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data.
    Sharan R, Ideker T, Kelley B, Shamir R, Karp RM.
    J Comput Biol; 2005 Aug 04; 12(6):835-46. PubMed ID: 16108720
    [Abstract] [Full Text] [Related]

  • 19. Interaction network containing conserved and essential protein complexes in Escherichia coli.
    Butland G, Peregrín-Alvarez JM, Li J, Yang W, Yang X, Canadien V, Starostine A, Richards D, Beattie B, Krogan N, Davey M, Parkinson J, Greenblatt J, Emili A.
    Nature; 2005 Feb 03; 433(7025):531-7. PubMed ID: 15690043
    [Abstract] [Full Text] [Related]

  • 20. The yeast mating-type switching endonuclease HO is a domesticated member of an unorthodox homing genetic element family.
    Coughlan AY, Lombardi L, Braun-Galleani S, Martos AA, Galeote V, Bigey F, Dequin S, Byrne KP, Wolfe KH.
    Elife; 2020 Apr 27; 9():. PubMed ID: 32338594
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.