These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


185 related items for PubMed ID: 20122159

  • 1. The mutation T477A in HIV-1 reverse transcriptase (RT) restores normal proteolytic processing of RT in virus with Gag-Pol mutated in the p51-RNH cleavage site.
    Abram ME, Sarafianos SG, Parniak MA.
    Retrovirology; 2010 Feb 01; 7():6. PubMed ID: 20122159
    [Abstract] [Full Text] [Related]

  • 2. Virion instability of human immunodeficiency virus type 1 reverse transcriptase (RT) mutated in the protease cleavage site between RT p51 and the RT RNase H domain.
    Abram ME, Parniak MA.
    J Virol; 2005 Sep 01; 79(18):11952-61. PubMed ID: 16140771
    [Abstract] [Full Text] [Related]

  • 3. Proteolytic processing of an HIV-1 pol polyprotein precursor: insights into the mechanism of reverse transcriptase p66/p51 heterodimer formation.
    Sluis-Cremer N, Arion D, Abram ME, Parniak MA.
    Int J Biochem Cell Biol; 2004 Sep 01; 36(9):1836-47. PubMed ID: 15183348
    [Abstract] [Full Text] [Related]

  • 4. Structural integrity of the ribonuclease H domain in HIV-1 reverse transcriptase.
    Slack RL, Spiriti J, Ahn J, Parniak MA, Zuckerman DM, Ishima R.
    Proteins; 2015 Aug 01; 83(8):1526-38. PubMed ID: 26061827
    [Abstract] [Full Text] [Related]

  • 5. HIV-1 protease dimer interface mutations that compensate for viral reverse transcriptase instability in infectious virions.
    Olivares I, Mulky A, Boross PI, Tözsér J, Kappes JC, López-Galíndez C, Menéndez-Arias L.
    J Mol Biol; 2007 Sep 14; 372(2):369-81. PubMed ID: 17651754
    [Abstract] [Full Text] [Related]

  • 6. Identification of amino acid residues in HIV-1 reverse transcriptase that are critical for the proteolytic processing of Gag-Pol precursors.
    Nishitsuji H, Yokoyama M, Sato H, Yamauchi S, Takaku H.
    FEBS Lett; 2011 Nov 04; 585(21):3372-7. PubMed ID: 22004763
    [Abstract] [Full Text] [Related]

  • 7. Efavirenz enhances the proteolytic processing of an HIV-1 pol polyprotein precursor and reverse transcriptase homodimer formation.
    Tachedjian G, Moore KL, Goff SP, Sluis-Cremer N.
    FEBS Lett; 2005 Jan 17; 579(2):379-84. PubMed ID: 15642347
    [Abstract] [Full Text] [Related]

  • 8. Glutamic residue 438 within the protease-sensitive subdomain of HIV-1 reverse transcriptase is critical for heterodimer processing in viral particles.
    Navarro JM, Damier L, Boretto J, Priet S, Canard B, Quérat G, Sire J.
    Virology; 2001 Nov 25; 290(2):300-8. PubMed ID: 11883194
    [Abstract] [Full Text] [Related]

  • 9. Subunit-specific analysis of the human immunodeficiency virus type 1 reverse transcriptase in vivo.
    Mulky A, Sarafianos SG, Arnold E, Wu X, Kappes JC.
    J Virol; 2004 Jul 25; 78(13):7089-96. PubMed ID: 15194785
    [Abstract] [Full Text] [Related]

  • 10. Analysis of amino acids in the beta7-beta8 loop of human immunodeficiency virus type 1 reverse transcriptase for their role in virus replication.
    Mulky A, Vu BC, Conway JA, Hughes SH, Kappes JC.
    J Mol Biol; 2007 Feb 02; 365(5):1368-78. PubMed ID: 17141805
    [Abstract] [Full Text] [Related]

  • 11. The nature of the N-terminal amino acid residue of HIV-1 RNase H is critical for the stability of reverse transcriptase in viral particles.
    Boso G, Örvell C, Somia NV.
    J Virol; 2015 Jan 15; 89(2):1286-97. PubMed ID: 25392207
    [Abstract] [Full Text] [Related]

  • 12. HIV-1 reverse transcriptase stability correlates with Gag cleavage efficiency: reverse transcriptase interaction implications for modulating protease activation.
    Hsieh SH, Yu FH, Huang KJ, Wang CT.
    J Virol; 2023 Sep 28; 97(9):e0094823. PubMed ID: 37671867
    [Abstract] [Full Text] [Related]

  • 13. Mutations that abrogate human immunodeficiency virus type 1 reverse transcriptase dimerization affect maturation of the reverse transcriptase heterodimer.
    Wapling J, Moore KL, Sonza S, Mak J, Tachedjian G.
    J Virol; 2005 Aug 28; 79(16):10247-57. PubMed ID: 16051818
    [Abstract] [Full Text] [Related]

  • 14. Conformational Changes in HIV-1 Reverse Transcriptase that Facilitate Its Maturation.
    Slack RL, Ilina TV, Xi Z, Giacobbi NS, Kawai G, Parniak MA, Sarafianos SG, Sluis Cremer N, Ishima R.
    Structure; 2019 Oct 01; 27(10):1581-1593.e3. PubMed ID: 31471129
    [Abstract] [Full Text] [Related]

  • 15. Mutations in the HIV-1 reverse transcriptase tryptophan repeat motif affect virion maturation and Gag-Pol packaging.
    Chiang CC, Tseng YT, Huang KJ, Pan YY, Wang CT.
    Virology; 2012 Jan 20; 422(2):278-87. PubMed ID: 22104208
    [Abstract] [Full Text] [Related]

  • 16. Biochemical mechanism of HIV-1 resistance to rilpivirine.
    Singh K, Marchand B, Rai DK, Sharma B, Michailidis E, Ryan EM, Matzek KB, Leslie MD, Hagedorn AN, Li Z, Norden PR, Hachiya A, Parniak MA, Xu HT, Wainberg MA, Sarafianos SG.
    J Biol Chem; 2012 Nov 02; 287(45):38110-23. PubMed ID: 22955279
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Construction and characterization of a temperature-sensitive human immunodeficiency virus type 1 reverse transcriptase mutant.
    Huang M, Zensen R, Cho M, Martin MA.
    J Virol; 1998 Mar 02; 72(3):2047-54. PubMed ID: 9499059
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.