These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 20127457
41. Adhesive ability means inhibition activities for lactobacillus against pathogens and S-layer protein plays an important role in adhesion. Zhang W, Wang H, Liu J, Zhao Y, Gao K, Zhang J. Anaerobe; 2013 Aug; 22():97-103. PubMed ID: 23792230 [Abstract] [Full Text] [Related]
42. Screening, Characterization and In Vitro Evaluation of Probiotic Properties Among Lactic Acid Bacteria Through Comparative Analysis. Devi SM, Archer AC, Halami PM. Probiotics Antimicrob Proteins; 2015 Sep; 7(3):181-92. PubMed ID: 26049925 [Abstract] [Full Text] [Related]
43. Isolation and characterization of anti-Salmonella lactic acid bacteria from the porcine gastrointestinal tract. Casey PG, Casey GD, Gardiner GE, Tangney M, Stanton C, Ross RP, Hill C, Fitzgerald GF. Lett Appl Microbiol; 2004 Sep; 39(5):431-8. PubMed ID: 15482434 [Abstract] [Full Text] [Related]
49. Transferability of a tetracycline resistance gene from probiotic Lactobacillus reuteri to bacteria in the gastrointestinal tract of humans. Egervärn M, Lindmark H, Olsson J, Roos S. Antonie Van Leeuwenhoek; 2010 Feb; 97(2):189-200. PubMed ID: 19997864 [Abstract] [Full Text] [Related]
51. Isolation and probiotic potential of lactic acid bacteria from swine feces for feed additive composition. Marchwińska K, Gwiazdowska D. Arch Microbiol; 2021 Dec 23; 204(1):61. PubMed ID: 34940898 [Abstract] [Full Text] [Related]
52. Isolation and identification of mucin-degrading bacteria originated from human faeces and their potential probiotic efficacy according to host-microbiome enterotype. Yuan H, Zhou J, Li N, Wu X, Huang S, Park S. J Appl Microbiol; 2022 Aug 23; 133(2):362-374. PubMed ID: 35365862 [Abstract] [Full Text] [Related]
53. A novel method for screening of potential probiotics for high adhesion capability. Wang X, Wu Q, Deng K, Wei Q, Hu P, He J, Liu H, Zheng Y, Wei H, Shah NP, Chen T. J Dairy Sci; 2015 Jul 23; 98(7):4310-7. PubMed ID: 25912863 [Abstract] [Full Text] [Related]
57. Evaluation of biochemical and molecular methods for Lactobacillus reuteri strains differentiation. Andrea B, Hana KS, Martina D, Hyacinta M, František B. Folia Microbiol (Praha); 2015 Mar 23; 60(2):137-41. PubMed ID: 25300353 [Abstract] [Full Text] [Related]
58. Lactobacillus saerimneri sp. nov., isolated from pig faeces. Pedersen C, Roos S. Int J Syst Evol Microbiol; 2004 Jul 23; 54(Pt 4):1365-1368. PubMed ID: 15280315 [Abstract] [Full Text] [Related]
59. Denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA amplicons to monitor changes in fecal bacterial populations of weaning pigs after introduction of Lactobacillus reuteri strain MM53. Simpson JM, McCracken VJ, Gaskins HR, Mackie RI. Appl Environ Microbiol; 2000 Nov 23; 66(11):4705-14. PubMed ID: 11055913 [Abstract] [Full Text] [Related]
60. Isolation and identification of potential probiotic Lactobacillus species from feces of infants in southwest Iran. Jomehzadeh N, Javaherizadeh H, Amin M, Saki M, Al-Ouqaili MTS, Hamidi H, Seyedmahmoudi M, Gorjian Z. Int J Infect Dis; 2020 Jul 23; 96():524-530. PubMed ID: 32439543 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]