These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
406 related items for PubMed ID: 20129857
1. On the weight convergence of Elman networks. Song Q. IEEE Trans Neural Netw; 2010 Mar; 21(3):463-80. PubMed ID: 20129857 [Abstract] [Full Text] [Related]
2. Robust adaptive gradient-descent training algorithm for recurrent neural networks in discrete time domain. Song Q, Wu Y, Soh YC. IEEE Trans Neural Netw; 2008 Nov; 19(11):1841-53. PubMed ID: 18990640 [Abstract] [Full Text] [Related]
3. Magnified gradient function with deterministic weight modification in adaptive learning. Ng SC, Cheung CC, Leung SH. IEEE Trans Neural Netw; 2004 Nov; 15(6):1411-23. PubMed ID: 15565769 [Abstract] [Full Text] [Related]
4. Elman backpropagation as reinforcement for simple recurrent networks. Grüning A. Neural Comput; 2007 Nov; 19(11):3108-31. PubMed ID: 17883351 [Abstract] [Full Text] [Related]
5. On adaptive learning rate that guarantees convergence in feedforward networks. Behera L, Kumar S, Patnaik A. IEEE Trans Neural Netw; 2006 Sep; 17(5):1116-25. PubMed ID: 17001974 [Abstract] [Full Text] [Related]
6. Global convergence of online BP training with dynamic learning rate. Zhang R, Xu ZB, Huang GB, Wang D. IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):330-41. PubMed ID: 24808511 [Abstract] [Full Text] [Related]
7. A new adaptive backpropagation algorithm based on Lyapunov stability theory for neural networks. Man Z, Wu HR, Liu S, Yu X. IEEE Trans Neural Netw; 2006 Nov; 17(6):1580-91. PubMed ID: 17131670 [Abstract] [Full Text] [Related]
8. An improvement of extreme learning machine for compact single-hidden-layer feedforward neural networks. Huynh HT, Won Y, Kim JJ. Int J Neural Syst; 2008 Oct; 18(5):433-41. PubMed ID: 18991365 [Abstract] [Full Text] [Related]
9. Multifeedback-layer neural network. Savran A. IEEE Trans Neural Netw; 2007 Mar; 18(2):373-84. PubMed ID: 17385626 [Abstract] [Full Text] [Related]
10. Parameter incremental learning algorithm for neural networks. Wan S, Banta LE. IEEE Trans Neural Netw; 2006 Nov; 17(6):1424-38. PubMed ID: 17131658 [Abstract] [Full Text] [Related]
11. Adaptive computation algorithm for RBF neural network. Han HG, Qiao JF. IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):342-7. PubMed ID: 24808512 [Abstract] [Full Text] [Related]
12. Recurrent neural networks training with stable bounding ellipsoid algorithm. Yu W, de Jesús Rubio J. IEEE Trans Neural Netw; 2009 Jun; 20(6):983-91. PubMed ID: 19447727 [Abstract] [Full Text] [Related]
13. New learning automata based algorithms for adaptation of backpropagation algorithm parameters. Meybodi MR, Beigy H. Int J Neural Syst; 2002 Feb; 12(1):45-67. PubMed ID: 11852444 [Abstract] [Full Text] [Related]
14. Neural network training with global optimization techniques. Yamazaki A, Ludermir TB. Int J Neural Syst; 2003 Apr; 13(2):77-86. PubMed ID: 12923920 [Abstract] [Full Text] [Related]
15. Novel maximum-margin training algorithms for supervised neural networks. Ludwig O, Nunes U. IEEE Trans Neural Netw; 2010 Jun; 21(6):972-84. PubMed ID: 20409990 [Abstract] [Full Text] [Related]
16. Convergence of cyclic and almost-cyclic learning with momentum for feedforward neural networks. Wang J, Yang J, Wu W. IEEE Trans Neural Netw; 2011 Aug; 22(8):1297-306. PubMed ID: 21813357 [Abstract] [Full Text] [Related]
17. Feedback-linearization-based neural adaptive control for unknown nonaffine nonlinear discrete-time systems. Deng H, Li HX, Wu YH. IEEE Trans Neural Netw; 2008 Sep; 19(9):1615-25. PubMed ID: 18779092 [Abstract] [Full Text] [Related]
18. Adaptive neural control for strict-feedback nonlinear systems without backstepping. Park JH, Kim SH, Moon CJ. IEEE Trans Neural Netw; 2009 Jul; 20(7):1204-9. PubMed ID: 19482573 [Abstract] [Full Text] [Related]
19. Online adaptive policy learning algorithm for H∞ state feedback control of unknown affine nonlinear discrete-time systems. Zhang H, Qin C, Jiang B, Luo Y. IEEE Trans Cybern; 2014 Dec; 44(12):2706-18. PubMed ID: 25095274 [Abstract] [Full Text] [Related]
20. Universal approximation of extreme learning machine with adaptive growth of hidden nodes. Zhang R, Lan Y, Huang GB, Xu ZB. IEEE Trans Neural Netw Learn Syst; 2012 Feb; 23(2):365-71. PubMed ID: 24808516 [Abstract] [Full Text] [Related] Page: [Next] [New Search]