These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [An experimental study on repairing bone defect with composite of beta-tricalcium phosphate-hyaluronic acid-type I collagen-marrow stromal cells]. Wei A, Liu S, Peng H, Tao H. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Jun; 19(6):468-72. PubMed ID: 16038466 [Abstract] [Full Text] [Related]
4. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat. Yu X, Shen G, Shang Q, Zhang Z, Zhao W, Zhang P, Liang D, Ren H, Jiang X. Int J Biol Macromol; 2021 Dec 15; 193(Pt A):510-518. PubMed ID: 34710477 [Abstract] [Full Text] [Related]
5. Dimensional stability of the alveolar ridge after implantation of a bioabsorbable bone graft substitute: a radiographic and histomorphometric study in rats. Hile DD, Sonis ST, Doherty SA, Tian X, Zhang Q, Jee WS, Trantolo DJ. J Oral Implantol; 2005 Dec 15; 31(2):68-76. PubMed ID: 15871525 [Abstract] [Full Text] [Related]
6. Transfect bone marrow stromal cells with pcDNA3.1-VEGF to construct tissue engineered bone in defect repair. Si HP, Lu ZH, Lin YL, Li JJ, Yin QF, Zhao DM, Wang SJ, Li JM, Wang HB, Zhang XH. Chin Med J (Engl); 2012 Mar 15; 125(5):906-11. PubMed ID: 22490595 [Abstract] [Full Text] [Related]
8. Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute. Kweon H, Lee KG, Chae CH, Balázsi C, Min SK, Kim JY, Choi JY, Kim SG. J Oral Maxillofac Surg; 2011 Jun 15; 69(6):1578-86. PubMed ID: 21272978 [Abstract] [Full Text] [Related]
12. Transplantation of human placenta-derived mesenchymal stem cells in a silk fibroin/hydroxyapatite scaffold improves bone repair in rabbits. Jin J, Wang J, Huang J, Huang F, Fu J, Yang X, Miao Z. J Biosci Bioeng; 2014 Nov 15; 118(5):593-8. PubMed ID: 24894683 [Abstract] [Full Text] [Related]
13. Silk Fibroin-Alginate-Hydroxyapatite Composite Particles in Bone Tissue Engineering Applications In Vivo. Jo YY, Kim SG, Kwon KJ, Kweon H, Chae WS, Yang WG, Lee EY, Seok H. Int J Mol Sci; 2017 Apr 18; 18(4):. PubMed ID: 28420224 [Abstract] [Full Text] [Related]
14. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA, Dias IR, Azevedo JT, Mano JF, Reis RL. Biomaterials; 2006 Dec 18; 27(36):6123-37. PubMed ID: 16945410 [Abstract] [Full Text] [Related]
15. Bone marrow stromal cells with a combined expression of BMP-2 and VEGF-165 enhanced bone regeneration. Xiao C, Zhou H, Liu G, Zhang P, Fu Y, Gu P, Hou H, Tang T, Fan X. Biomed Mater; 2011 Feb 18; 6(1):015013. PubMed ID: 21252414 [Abstract] [Full Text] [Related]
20. Human periosteum-derived cells combined with superporous hydroxyapatite blocks used as an osteogenic bone substitute for periodontal regenerative therapy: an animal implantation study using nude mice. Kawase T, Okuda K, Kogami H, Nakayama H, Nagata M, Sato T, Wolff LF, Yoshie H. J Periodontol; 2010 Mar 18; 81(3):420-7. PubMed ID: 20192869 [Abstract] [Full Text] [Related] Page: [Next] [New Search]