These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 20130745

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Intra- and intergenomic homology of B-genome chromosomes in trigenomic combinations of the cultivated Brassica species revealed by GISH analysis.
    Ge XH, Li ZY.
    Chromosome Res; 2007; 15(7):849-61. PubMed ID: 17899408
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Different fertility and meiotic regularity in allohexaploids derived from trigenomic hybrids between three cultivated Brassica allotetraploids and B. maurorum.
    Yao X, Ge X, Li Z.
    Plant Cell Rep; 2012 Apr; 31(4):781-8. PubMed ID: 22147137
    [Abstract] [Full Text] [Related]

  • 6. Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids.
    Cui C, Ge X, Gautam M, Kang L, Li Z.
    Genetics; 2012 Jul; 191(3):725-38. PubMed ID: 22505621
    [Abstract] [Full Text] [Related]

  • 7. Characterization of interploid hybrids from crosses between Brassica juncea and B. oleracea and the production of yellow-seeded B. napus.
    Wen J, Zhu L, Qi L, Ke H, Yi B, Shen J, Tu J, Ma C, Fu T.
    Theor Appl Genet; 2012 Jun; 125(1):19-32. PubMed ID: 22350176
    [Abstract] [Full Text] [Related]

  • 8. Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus × B. carinata.
    Navabi ZK, Stead KE, Pires JC, Xiong Z, Sharpe AG, Parkin IA, Rahman MH, Good AG.
    Genetics; 2011 Mar; 187(3):659-73. PubMed ID: 21196520
    [Abstract] [Full Text] [Related]

  • 9. Stable, fertile lines produced by hybridization between allotetraploids Brassica juncea (AABB) and Brassica carinata (BBCC) have merged the A and C genomes.
    Katche E, Gaebelein R, Idris Z, Vasquez-Teuber P, Lo YT, Nugent D, Batley J, Mason AS.
    New Phytol; 2021 May; 230(3):1242-1257. PubMed ID: 33476056
    [Abstract] [Full Text] [Related]

  • 10. Identification of individual chromosomes and parental genomes in Brassica juncea using GISH and FISH.
    Maluszynska J, Hasterok R.
    Cytogenet Genome Res; 2005 May; 109(1-3):310-4. PubMed ID: 15753591
    [Abstract] [Full Text] [Related]

  • 11. Distinct subgenome stabilities in synthesized Brassica allohexaploids.
    Zhou J, Tan C, Cui C, Ge X, Li Z.
    Theor Appl Genet; 2016 Jul; 129(7):1257-1271. PubMed ID: 26971112
    [Abstract] [Full Text] [Related]

  • 12. Resynthesis of Brassica napus through hybridization between B. juncea and B. carinata.
    Chatterjee D, Banga S, Gupta M, Bharti S, Salisbury PA, Banga SS.
    Theor Appl Genet; 2016 May; 129(5):977-90. PubMed ID: 26849238
    [Abstract] [Full Text] [Related]

  • 13. Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization.
    Li M, Qian W, Meng J, Li Z.
    Chromosome Res; 2004 May; 12(5):417-26. PubMed ID: 15252238
    [Abstract] [Full Text] [Related]

  • 14. A chromosome-scale assembly of Brassica carinata (BBCC) accession HC20 containing resistance to multiple pathogens and an early generation assessment of introgressions into B. juncea (AABB).
    Paritosh K, Rajarammohan S, Yadava SK, Sharma S, Verma R, Mathur S, Mukhopadhyay A, Gupta V, Pradhan AK, Kaur J, Pental D.
    Plant J; 2024 Jul; 119(2):762-782. PubMed ID: 38722594
    [Abstract] [Full Text] [Related]

  • 15. High efficiency production and genomic in situ hybridization analysis of Brassica aneuploids and homozygous plants.
    Li Z, Ceccarelli M, Minelli S, Contento A, Liu Y, Cionini PG.
    Sci China C Life Sci; 2003 Feb; 46(1):104-12. PubMed ID: 20213367
    [Abstract] [Full Text] [Related]

  • 16. Reproduction and cytogenetic characterization of interspecific hybrids derived from crosses between Brassica carinata and B. rapa.
    Li MT, Li ZY, Zhang CY, Qian W, Meng JL.
    Theor Appl Genet; 2005 May; 110(7):1284-9. PubMed ID: 15806346
    [Abstract] [Full Text] [Related]

  • 17. Cytological and morphological analysis of hybrids between Brassicoraphanus, and Brassica napus for introgression of clubroot resistant trait into Brassica napus L.
    Zhan Z, Nwafor CC, Hou Z, Gong J, Zhu B, Jiang Y, Zhou Y, Wu J, Piao Z, Tong Y, Liu C, Zhang C.
    PLoS One; 2017 May; 12(5):e0177470. PubMed ID: 28505203
    [Abstract] [Full Text] [Related]

  • 18. Synthesis of intergeneric hybrids and establishment of genomic affinity between Diplotaxis catholica and crop Brassica species.
    Banga SS, Bhaskar PB, Ahuja I.
    Theor Appl Genet; 2003 May; 106(7):1244-7. PubMed ID: 12748775
    [Abstract] [Full Text] [Related]

  • 19. [Genomic in situ hybridization in intergeneric hybrids between Raphanus sativus and Brassica oleracea].
    Cheng YG, Wu JS, Hua YW, Zhang MH, Chen HG.
    Yi Chuan; 2006 Jul; 28(7):858-64. PubMed ID: 16825175
    [Abstract] [Full Text] [Related]

  • 20. Development of B. carinata with super-high erucic acid content through interspecific hybridization.
    Roslinsky V, Falk KC, Gaebelein R, Mason AS, Eynck C.
    Theor Appl Genet; 2021 Oct; 134(10):3167-3181. PubMed ID: 34269830
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.