These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 20130882
1. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C. Plant Cell Rep; 2010 Apr; 29(4):317-25. PubMed ID: 20130882 [Abstract] [Full Text] [Related]
2. RNAi knockdown of fatty acid elongase1 alters fatty acid composition in Brassica napus. Shi J, Lang C, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G. Biochem Biophys Res Commun; 2015 Oct 23; 466(3):518-22. PubMed ID: 26381181 [Abstract] [Full Text] [Related]
3. Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C. Theor Appl Genet; 2009 Feb 23; 118(4):765-73. PubMed ID: 19050848 [Abstract] [Full Text] [Related]
4. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds. Shi J, Lang C, Wang F, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G. Plant Sci; 2017 Oct 23; 263():177-182. PubMed ID: 28818373 [Abstract] [Full Text] [Related]
5. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Huang H, Cui T, Zhang L, Yang Q, Yang Y, Xie K, Fan C, Zhou Y. Theor Appl Genet; 2020 Aug 23; 133(8):2401-2411. PubMed ID: 32448919 [Abstract] [Full Text] [Related]
6. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Wu G, Wu Y, Xiao L, Li X, Lu C. Theor Appl Genet; 2008 Feb 23; 116(4):491-9. PubMed ID: 18075728 [Abstract] [Full Text] [Related]
7. Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC. Plant Cell Rep; 2011 Oct 23; 30(10):1881-92. PubMed ID: 21647637 [Abstract] [Full Text] [Related]
8. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Fu T, Zhou Y. Theor Appl Genet; 2012 Aug 23; 125(4):715-29. PubMed ID: 22534790 [Abstract] [Full Text] [Related]
9. Development of ultra-high erucic acid oil in the industrial oil crop Crambe abyssinica. Li X, van Loo EN, Gruber J, Fan J, Guan R, Frentzen M, Stymne S, Zhu LH. Plant Biotechnol J; 2012 Sep 23; 10(7):862-70. PubMed ID: 22642539 [Abstract] [Full Text] [Related]
10. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.). Claver A, Rey R, López MV, Picorel R, Alfonso M. J Plant Physiol; 2017 Jan 23; 208():7-16. PubMed ID: 27889523 [Abstract] [Full Text] [Related]
11. Down-regulation of crambe fatty acid desaturase and elongase in Arabidopsis and crambe resulted in significantly increased oleic acid content in seed oil. Li X, Mei D, Liu Q, Fan J, Singh S, Green A, Zhou XR, Zhu LH. Plant Biotechnol J; 2016 Jan 23; 14(1):323-31. PubMed ID: 25998013 [Abstract] [Full Text] [Related]
13. Determination of Substrate Preferences for Desaturases and Elongases for Production of Docosahexaenoic Acid from Oleic Acid in Engineered Canola. Yilmaz JL, Lim ZL, Beganovic M, Breazeale S, Andre C, Stymne S, Vrinten P, Senger T. Lipids; 2017 Mar 28; 52(3):207-222. PubMed ID: 28197856 [Abstract] [Full Text] [Related]
14. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. Bai S, Engelen S, Denolf P, Wallis JG, Lynch K, Bengtsson JD, Van Thournout M, Haesendonckx B, Browse J. Plant J; 2019 Apr 28; 98(1):33-41. PubMed ID: 30536486 [Abstract] [Full Text] [Related]
15. [Obtaining new germplast of Brassica napus with high oleic acid content by RNA interference and marker-free transformation of Fad2 gene]. Chen W, Li JF, Dong YS, Li GZ, Cun SX, Wang JQ. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Dec 28; 32(6):665-71. PubMed ID: 17167203 [Abstract] [Full Text] [Related]
16. CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus. Shi J, Ni X, Huang J, Fu Y, Wang T, Yu H, Zhang Y. Genes (Basel); 2022 Sep 20; 13(10):. PubMed ID: 36292566 [Abstract] [Full Text] [Related]
17. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N. Plant Physiol Biochem; 2018 Oct 20; 131():63-69. PubMed ID: 29753601 [Abstract] [Full Text] [Related]
18. Characteristics of Metabolites by Seed-Specific Inhibition of FAD2 in Brassica napus L. Zhou C, Pan W, Peng Q, Chen Y, Zhou T, Wu C, Hartley W, Li J, Xu M, Liu C, Li P, Rao L, Wang Q. J Agric Food Chem; 2021 May 19; 69(19):5452-5462. PubMed ID: 33969684 [Abstract] [Full Text] [Related]
19. Identification of transcription factor BnHDG4-A08 as a novel candidate associated with the accumulation of oleic, linoleic, linolenic, and erucic acid in Brassica napus. Fu Y, Yao M, Qiu P, Song M, Ni X, Niu E, Shi J, Wang T, Zhang Y, Yu H, Qian L. Theor Appl Genet; 2024 Oct 01; 137(10):243. PubMed ID: 39352575 [Abstract] [Full Text] [Related]
20. RNAi trigger fragment truncation attenuates soybean FAD2-1 transcript suppression and yields intermediate oil phenotypes. Wagner N, Mroczka A, Roberts PD, Schreckengost W, Voelker T. Plant Biotechnol J; 2011 Sep 01; 9(7):723-8. PubMed ID: 21083800 [Abstract] [Full Text] [Related] Page: [Next] [New Search]