These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A compelling experimental test of the hypothesis that enzymes have evolved to enhance quantum mechanical tunneling in hydrogen transfer reactions: the beta-neopentylcobalamin system combined with prior adocobalamin data. Doll KM, Finke RG. Inorg Chem; 2003 Aug 11; 42(16):4849-56. PubMed ID: 12895106 [Abstract] [Full Text] [Related]
6. Molecular modeling of the mechanochemical triggering mechanism for catalysis of carbon-cobalt bond homolysis in coenzyme B12. Brown KL, Marques HM. J Inorg Biochem; 2001 Jan 15; 83(2-3):121-32. PubMed ID: 11237251 [Abstract] [Full Text] [Related]
7. The mechanism of adenosylcobalamin-dependent rearrangements. Babior BM. Biofactors; 1988 Jan 15; 1(1):21-6. PubMed ID: 3076429 [Abstract] [Full Text] [Related]
8. The first experimental test of the hypothesis that enzymes have evolved to enhance hydrogen tunneling. Doll KM, Bender BR, Finke RG. J Am Chem Soc; 2003 Sep 10; 125(36):10877-84. PubMed ID: 12952467 [Abstract] [Full Text] [Related]
9. Enzyme catalysis of 1,2-amino shifts: the cooperative action of B6, B12, and aminomutases. Wetmore SD, Smith DM, Radom L. J Am Chem Soc; 2001 Sep 12; 123(36):8678-89. PubMed ID: 11535072 [Abstract] [Full Text] [Related]
10. Radical mechanisms in adenosylmethionine- and adenosylcobalamin-dependent enzymatic reactions. Frey PA, Reed GH. Arch Biochem Biophys; 2000 Oct 01; 382(1):6-14. PubMed ID: 11051091 [Abstract] [Full Text] [Related]
11. Synthesis, solution and crystal structure of the coenzyme B(12) analogue Co(β)-2'-fluoro-2',5'-dideoxyadenosylcobalamin. Hunger M, Wurst K, Kräutler B. J Inorg Biochem; 2015 Jul 01; 148():62-8. PubMed ID: 25726330 [Abstract] [Full Text] [Related]
15. Paradigm Shift for Radical S-Adenosyl-l-methionine Reactions: The Organometallic Intermediate Ω Is Central to Catalysis. Byer AS, Yang H, McDaniel EC, Kathiresan V, Impano S, Pagnier A, Watts H, Denler C, Vagstad AL, Piel J, Duschene KS, Shepard EM, Shields TP, Scott LG, Lilla EA, Yokoyama K, Broderick WE, Hoffman BM, Broderick JB. J Am Chem Soc; 2018 Jul 18; 140(28):8634-8638. PubMed ID: 29954180 [Abstract] [Full Text] [Related]
16. Structural Basis for the Activation of the Cobalt-Carbon Bond and Control of the Adenosyl Radical in Coenzyme B12 Catalysis. Shibata N, Toraya T. Chembiochem; 2023 Jul 17; 24(14):e202300021. PubMed ID: 36916316 [Abstract] [Full Text] [Related]
17. Can photolysis of the CoC bond in coenzyme B12-dependent enzymes be used to mimic the native reaction? Mamun AA, Toda MJ, Kozlowski PM. J Photochem Photobiol B; 2019 Feb 17; 191():175-184. PubMed ID: 30682691 [Abstract] [Full Text] [Related]
19. Critical role of arginine 160 of the EutB protein subunit for active site structure and radical catalysis in coenzyme B12-dependent ethanolamine ammonia-lyase. Sun L, Groover OA, Canfield JM, Warncke K. Biochemistry; 2008 May 20; 47(20):5523-35. PubMed ID: 18444665 [Abstract] [Full Text] [Related]
20. Radical catalysis in coenzyme B12-dependent isomerization (eliminating) reactions. Toraya T. Chem Rev; 2003 Jun 20; 103(6):2095-127. PubMed ID: 12797825 [No Abstract] [Full Text] [Related] Page: [Next] [New Search]