These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


448 related items for PubMed ID: 20139070

  • 21. Critical roles of tubular mitochondrial ATP synthase dysfunction in maleic acid-induced acute kidney injury.
    Lin HY, Liang CJ, Yang MY, Chen PL, Wang TM, Chen YH, Shih YH, Liu W, Chiu CC, Chiang CK, Lin CS, Lin HC.
    Apoptosis; 2024 Jun; 29(5-6):620-634. PubMed ID: 38281282
    [Abstract] [Full Text] [Related]

  • 22. Uncoupling protein 1 inhibits mitochondrial reactive oxygen species generation and alleviates acute kidney injury.
    Jia P, Wu X, Pan T, Xu S, Hu J, Ding X.
    EBioMedicine; 2019 Nov; 49():331-340. PubMed ID: 31678001
    [Abstract] [Full Text] [Related]

  • 23. Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury.
    Zhu L, Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Lu Y, Cheng J.
    Theranostics; 2020 Nov; 10(13):5829-5844. PubMed ID: 32483422
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Cisplatin-induced oxidative stress stimulates renal Fas ligand shedding.
    Soni H, Kaminski D, Gangaraju R, Adebiyi A.
    Ren Fail; 2018 Nov; 40(1):314-322. PubMed ID: 29619879
    [Abstract] [Full Text] [Related]

  • 26. Decreased IFT88 expression with primary cilia shortening causes mitochondrial dysfunction in cisplatin-induced tubular injury.
    Fujii R, Hasegawa S, Maekawa H, Inoue T, Yoshioka K, Uni R, Ikeda Y, Nangaku M, Inagi R.
    Am J Physiol Renal Physiol; 2021 Sep 01; 321(3):F278-F292. PubMed ID: 34338030
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Blockade of KCa3.1 potassium channels protects against cisplatin-induced acute kidney injury.
    Chen CL, Liao JW, Hu OY, Pao LH.
    Arch Toxicol; 2016 Sep 01; 90(9):2249-2260. PubMed ID: 26438401
    [Abstract] [Full Text] [Related]

  • 29. Protective roles of thrombomodulin in cisplatin-induced nephrotoxicity through the inhibition of oxidative and endoplasmic reticulum stress.
    Yamamoto H, Ishida Y, Zhang S, Osako M, Nosaka M, Kuninaka Y, Ishigami A, Iwahashi Y, Aragane M, Matsumoto L, Kimura A, Kondo T.
    Sci Rep; 2024 Jun 18; 14(1):14004. PubMed ID: 38890434
    [Abstract] [Full Text] [Related]

  • 30. Porous Se@SiO2 nanospheres attenuate cisplatin-induced acute kidney injury via activation of Sirt1.
    Li X, Wang Q, Deng G, Liu Y, Wei B, Liu X, Bao W, Wang Q, Wu S.
    Toxicol Appl Pharmacol; 2019 Oct 01; 380():114704. PubMed ID: 31400413
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Dipeptidyl peptidase-4 inhibitor teneligliptin accelerates recovery from cisplatin-induced acute kidney injury by attenuating inflammation and promoting tubular regeneration.
    Iwakura T, Zhao Z, Marschner JA, Devarapu SK, Yasuda H, Anders HJ.
    Nephrol Dial Transplant; 2019 Oct 01; 34(10):1669-1680. PubMed ID: 30624740
    [Abstract] [Full Text] [Related]

  • 34. Heme oxygenase-1 inhibits renal tubular macroautophagy in acute kidney injury.
    Bolisetty S, Traylor AM, Kim J, Joseph R, Ricart K, Landar A, Agarwal A.
    J Am Soc Nephrol; 2010 Oct 01; 21(10):1702-12. PubMed ID: 20705711
    [Abstract] [Full Text] [Related]

  • 35. AMPK activation coupling SENP1-Sirt3 axis protects against acute kidney injury.
    Zhu M, He J, Xu Y, Zuo Y, Zhou W, Yue Z, Shao X, Cheng J, Wang T, Mou S.
    Mol Ther; 2023 Oct 04; 31(10):3052-3066. PubMed ID: 37608549
    [Abstract] [Full Text] [Related]

  • 36. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.
    Livingston MJ, Wang J, Zhou J, Wu G, Ganley IG, Hill JA, Yin XM, Dong Z.
    Autophagy; 2019 Dec 04; 15(12):2142-2162. PubMed ID: 31066324
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Increasing cGMP-dependent protein kinase I activity attenuates cisplatin-induced kidney injury through protection of mitochondria function.
    Maimaitiyiming H, Li Y, Cui W, Tong X, Norman H, Qi X, Wang S.
    Am J Physiol Renal Physiol; 2013 Sep 15; 305(6):F881-90. PubMed ID: 23825069
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 23.