These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


373 related items for PubMed ID: 20140621

  • 21. Internal and external responses of anterior lumbar/lumbosacral fusion: nonlinear finite element analysis.
    Guan Y, Yoganandan N, Maiman DJ, Pintar FA.
    J Spinal Disord Tech; 2008 Jun; 21(4):299-304. PubMed ID: 18525492
    [Abstract] [Full Text] [Related]

  • 22. Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study.
    Cho W, Wu C, Mehbod AA, Transfeldt EE.
    Clin Biomech (Bristol); 2008 Oct; 23(8):979-85. PubMed ID: 18675496
    [Abstract] [Full Text] [Related]

  • 23. In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques.
    Niemeyer TK, Koriller M, Claes L, Kettler A, Werner K, Wilke HJ.
    Neurosurgery; 2006 Dec; 59(6):1271-6; discussion 1276-7. PubMed ID: 17277690
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Finite element model predicts the biomechanical performance of transforaminal lumbar interbody fusion with various porous additive manufactured cages.
    Zhang Z, Li H, Fogel GR, Xiang D, Liao Z, Liu W.
    Comput Biol Med; 2018 Apr 01; 95():167-174. PubMed ID: 29501735
    [Abstract] [Full Text] [Related]

  • 28. Position of interbody spacer in transforaminal lumbar interbody fusion: effect on 3-dimensional stability and sagittal lumbar contour.
    Faundez AA, Mehbod AA, Wu C, Wu W, Ploumis A, Transfeldt EE.
    J Spinal Disord Tech; 2008 May 01; 21(3):175-80. PubMed ID: 18458586
    [Abstract] [Full Text] [Related]

  • 29. Minimally invasive decompression for lumbar spinal canal stenosis in younger age patients could lead to higher stresses in the remaining neural arch -- a finite element investigation.
    Ivanov A, Faizan A, Sairyo K, Ebraheim N, Biyani A, Goel VK.
    Minim Invasive Neurosurg; 2007 Feb 01; 50(1):18-22. PubMed ID: 17546538
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. [Finite element analysis of screw in percutaneous axial lumbosacral interbody fusion].
    Xu HG, Yang XM, Wu TL, Wang H, Chen XW, Wang LT, Jin S, Liu P.
    Zhonghua Yi Xue Za Zhi; 2010 Jan 19; 90(3):153-6. PubMed ID: 20356547
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Design and Biomechanical Evaluation of a Bidirectional Expandable Cage for Oblique Lateral Interbody Fusion.
    Wu Y, Ma J, Dai J, Wang Y, Bai H, Lu B, Chen J, Fan X, Ma X.
    World Neurosurg; 2023 Dec 19; 180():e644-e652. PubMed ID: 37805128
    [Abstract] [Full Text] [Related]

  • 39. Biomechanical Analysis of Porous Additive Manufactured Cages for Lateral Lumbar Interbody Fusion: A Finite Element Analysis.
    Zhang Z, Li H, Fogel GR, Liao Z, Li Y, Liu W.
    World Neurosurg; 2018 Mar 19; 111():e581-e591. PubMed ID: 29288855
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.