These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


333 related items for PubMed ID: 20141127

  • 41. Glass transition and stable glass formation of tetrachloromethane.
    Chua YZ, Tylinski M, Tatsumi S, Ediger MD, Schick C.
    J Chem Phys; 2016 Jun 28; 144(24):244503. PubMed ID: 27369523
    [Abstract] [Full Text] [Related]

  • 42. Evaluation of growth front velocity in ultrastable glasses of indomethacin over a wide temperature interval.
    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Lopeandía AF, Clavaguera-Mora MT, Rodríguez-Viejo J.
    J Phys Chem B; 2014 Sep 11; 118(36):10795-801. PubMed ID: 25105838
    [Abstract] [Full Text] [Related]

  • 43. The glass-liquid transition of water on hydrophobic surfaces.
    Souda R.
    J Chem Phys; 2008 Sep 28; 129(12):124707. PubMed ID: 19045048
    [Abstract] [Full Text] [Related]

  • 44. A molecular view of vapor deposited glasses.
    Singh S, de Pablo JJ.
    J Chem Phys; 2011 May 21; 134(19):194903. PubMed ID: 21599084
    [Abstract] [Full Text] [Related]

  • 45. Structural relaxation of vapor-deposited molecular glasses and supercooled liquids.
    Ishii K, Nakayama H.
    Phys Chem Chem Phys; 2014 Jun 28; 16(24):12073-92. PubMed ID: 24828764
    [Abstract] [Full Text] [Related]

  • 46. Perspective: Highly stable vapor-deposited glasses.
    Ediger MD.
    J Chem Phys; 2017 Dec 07; 147(21):210901. PubMed ID: 29221396
    [Abstract] [Full Text] [Related]

  • 47. Vapor-deposited alcohol glasses reveal a wide range of kinetic stability.
    Tylinski M, Chua YZ, Beasley MS, Schick C, Ediger MD.
    J Chem Phys; 2016 Nov 07; 145(17):174506. PubMed ID: 27825204
    [Abstract] [Full Text] [Related]

  • 48. Using deposition rate to increase the thermal and kinetic stability of vapor-deposited hole transport layer glasses via a simple sublimation apparatus.
    Kearns KL, Krzyskowski P, Devereaux Z.
    J Chem Phys; 2017 May 28; 146(20):203328. PubMed ID: 28571345
    [Abstract] [Full Text] [Related]

  • 49. High-throughput ellipsometric characterization of vapor-deposited indomethacin glasses.
    Dalal SS, Fakhraai Z, Ediger MD.
    J Phys Chem B; 2013 Dec 12; 117(49):15415-25. PubMed ID: 23865432
    [Abstract] [Full Text] [Related]

  • 50. Surface-Bulk Interplay in Vapor-Deposited Glasses: Crossover Length and the Origin of Front Transformation.
    Rodríguez-Tinoco C, Gonzalez-Silveira M, Ràfols-Ribé J, Vila-Costa A, Martinez-Garcia JC, Rodríguez-Viejo J.
    Phys Rev Lett; 2019 Oct 11; 123(15):155501. PubMed ID: 31702315
    [Abstract] [Full Text] [Related]

  • 51. Surface self-diffusion of organic glasses.
    Brian CW, Yu L.
    J Phys Chem A; 2013 Dec 19; 117(50):13303-9. PubMed ID: 23829661
    [Abstract] [Full Text] [Related]

  • 52. Three-Layer Model for the Emergence of Ultrastable Glasses from the Surfaces of Supercooled Liquids.
    Mangalara JH, Marvin MD, Simmons DS.
    J Phys Chem B; 2016 Jun 02; 120(21):4861-5. PubMed ID: 27171532
    [Abstract] [Full Text] [Related]

  • 53. Molecular modeling of vapor-deposited polymer glasses.
    Lin PH, Lyubimov I, Yu L, Ediger MD, de Pablo JJ.
    J Chem Phys; 2014 May 28; 140(20):204504. PubMed ID: 24880298
    [Abstract] [Full Text] [Related]

  • 54. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.
    Smith RS, Matthiesen J, Kay BD.
    J Chem Phys; 2010 Mar 28; 132(12):124502. PubMed ID: 20370128
    [Abstract] [Full Text] [Related]

  • 55. Measuring diffusivity in supercooled liquid nanoscale films using inert gas permeation. II. Diffusion of Ar, Kr, Xe, and CH4 through methanol.
    Matthiesen J, Smith RS, Kay BD.
    J Chem Phys; 2010 Nov 07; 133(17):174505. PubMed ID: 21054049
    [Abstract] [Full Text] [Related]

  • 56. On dynamic heterogeneity in supercooled liquids.
    Graessley WW.
    J Chem Phys; 2009 Apr 28; 130(16):164502. PubMed ID: 19405589
    [Abstract] [Full Text] [Related]

  • 57. Exploring the Importance of Surface Diffusion in Stability of Vapor-Deposited Organic Glasses.
    Samanta S, Huang G, Gao G, Zhang Y, Zhang A, Wolf S, Woods CN, Jin Y, Walsh PJ, Fakhraai Z.
    J Phys Chem B; 2019 May 09; 123(18):4108-4117. PubMed ID: 30998844
    [Abstract] [Full Text] [Related]

  • 58. Structure and relaxation in germanium selenide glasses and supercooled liquids: a Raman spectroscopic study.
    Edwards TG, Sen S.
    J Phys Chem B; 2011 Apr 21; 115(15):4307-14. PubMed ID: 21446741
    [Abstract] [Full Text] [Related]

  • 59. Phase diagram and glass transition of confined benzene.
    Xia Y, Dosseh G, Morineau D, Alba-Simionesco C.
    J Phys Chem B; 2006 Oct 05; 110(39):19735-44. PubMed ID: 17004844
    [Abstract] [Full Text] [Related]

  • 60. Glasses denser than the supercooled liquid.
    Jin Y, Zhang A, Wolf SE, Govind S, Moore AR, Zhernenkov M, Freychet G, Arabi Shamsabadi A, Fakhraai Z.
    Proc Natl Acad Sci U S A; 2021 Aug 03; 118(31):. PubMed ID: 34330828
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 17.