These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
94 related items for PubMed ID: 20146743
1. Multicopy suppression of oxidant-sensitive eos1 mutation by IZH2 in Saccharomyces cerevisiae and the involvement of Eos1 in zinc homeostasis. Nakamura T, Takahashi S, Takagi H, Shima J. FEMS Yeast Res; 2010 May; 10(3):259-69. PubMed ID: 20146743 [Abstract] [Full Text] [Related]
2. EOS1, whose deletion confers sensitivity to oxidative stress, is involved in N-glycosylation in Saccharomyces cerevisiae. Nakamura T, Ando A, Takagi H, Shima J. Biochem Biophys Res Commun; 2007 Feb 09; 353(2):293-8. PubMed ID: 17187761 [Abstract] [Full Text] [Related]
3. Expression of ZRC1 coding for suppressor of zinc toxicity is induced by zinc-starvation stress in Zap1-dependent fashion in Saccharomyces cerevisiae. Miyabe S, Izawa S, Inoue Y. Biochem Biophys Res Commun; 2000 Oct 05; 276(3):879-84. PubMed ID: 11027563 [Abstract] [Full Text] [Related]
4. HIR1, the co-repressor of histone gene transcription of Saccharomyces cerevisiae, acts as a multicopy suppressor of the apoptotic phenotypes of the LSM4 mRNA degradation mutant. Mazzoni C, Palermo V, Torella M, Falcone C. FEMS Yeast Res; 2005 Dec 05; 5(12):1229-35. PubMed ID: 16169287 [Abstract] [Full Text] [Related]
5. Yeast Saccharomyces cerevisiae adiponectin receptor homolog Izh2 is involved in the regulation of zinc, phospholipid and pH homeostasis. Mattiazzi Ušaj M, Prelec M, Brložnik M, Primo C, Curk T, Ščančar J, Yenush L, Petrovič U. Metallomics; 2015 Sep 05; 7(9):1338-51. PubMed ID: 26067383 [Abstract] [Full Text] [Related]
6. Disruption of iron homeostasis in Saccharomyces cerevisiae by high zinc levels: a genome-wide study. Pagani MA, Casamayor A, Serrano R, Atrian S, Ariño J. Mol Microbiol; 2007 Jul 05; 65(2):521-37. PubMed ID: 17630978 [Abstract] [Full Text] [Related]
7. Lack of DNA helicase Pif1 disrupts zinc and iron homoeostasis in yeast. Guirola M, Barreto L, Pagani A, Romagosa M, Casamayor A, Atrian S, Ariño J. Biochem J; 2010 Dec 15; 432(3):595-605. PubMed ID: 20858222 [Abstract] [Full Text] [Related]
8. Zap1 activation domain 1 and its role in controlling gene expression in response to cellular zinc status. Herbig A, Bird AJ, Swierczek S, McCall K, Mooney M, Wu CY, Winge DR, Eide DJ. Mol Microbiol; 2005 Aug 15; 57(3):834-46. PubMed ID: 16045625 [Abstract] [Full Text] [Related]
9. High dosage of the small nucleolar RNA snR10 specifically suppresses defects of a yeast rrp5 mutant. Torchet C, Hermann-Le Denmat S. Mol Genet Genomics; 2002 Sep 15; 268(1):70-80. PubMed ID: 12242501 [Abstract] [Full Text] [Related]
10. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. Shima J, Ando A, Takagi H. Yeast; 2008 Mar 15; 25(3):179-90. PubMed ID: 18224659 [Abstract] [Full Text] [Related]
11. Identification of a novel pathway involving a GATA transcription factor in yeast and possibly in plant Zn uptake and homeostasis. Milner MJ, Pence NS, Liu J, Kochian LV. J Integr Plant Biol; 2014 Mar 15; 56(3):271-80. PubMed ID: 24433538 [Abstract] [Full Text] [Related]
12. Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: the role of NADPH-generating systems and the SKN7 transcription factor. Ng CH, Tan SX, Perrone GG, Thorpe GW, Higgins VJ, Dawes IW. Free Radic Biol Med; 2008 Mar 15; 44(6):1131-45. PubMed ID: 18206664 [Abstract] [Full Text] [Related]
13. Loss of IRA2 suppresses the growth defect on low glucose caused by the snf3 mutation in Saccharomyces cerevisiae. Ramakrishnan V, Theodoris G, Bisson LF. FEMS Yeast Res; 2007 Jan 15; 7(1):67-77. PubMed ID: 17311585 [Abstract] [Full Text] [Related]
14. Identification and characterization of rns4/vps32 mutation in the RNase T1 expression-sensitive strain of Saccharomyces cerevisiae: Evidence for altered ambient response resulting in transportation of the secretory protein to vacuoles. Unno K, Juvvadi PR, Nakajima H, Shirahige K, Kitamoto K. FEMS Yeast Res; 2005 Jun 15; 5(9):801-12. PubMed ID: 15925308 [Abstract] [Full Text] [Related]
15. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Grant CM, Perrone G, Dawes IW. Biochem Biophys Res Commun; 1998 Dec 30; 253(3):893-8. PubMed ID: 9918826 [Abstract] [Full Text] [Related]
16. Psoralen-sensitive mutant pso9-1 of Saccharomyces cerevisiae contains a mutant allele of the DNA damage checkpoint gene MEC3. Cardone JM, Revers LF, Machado RM, Bonatto D, Brendel M, Henriques JA. DNA Repair (Amst); 2006 Feb 03; 5(2):163-71. PubMed ID: 16202664 [Abstract] [Full Text] [Related]
17. After chitin docking, toxicity of Kluyveromyces lactis zymocin requires Saccharomyces cerevisiae plasma membrane H+-ATPase. Mehlgarten C, Schaffrath R. Cell Microbiol; 2004 Jun 03; 6(6):569-80. PubMed ID: 15104597 [Abstract] [Full Text] [Related]
18. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. Pujol-Carrion N, Belli G, Herrero E, Nogues A, de la Torre-Ruiz MA. J Cell Sci; 2006 Nov 01; 119(Pt 21):4554-64. PubMed ID: 17074835 [Abstract] [Full Text] [Related]
19. Spontaneous mutation, oxidative DNA damage, and the roles of base and nucleotide excision repair in the yeast Saccharomyces cerevisiae. Scott AD, Neishabury M, Jones DH, Reed SH, Boiteux S, Waters R. Yeast; 1999 Feb 01; 15(3):205-18. PubMed ID: 10077187 [Abstract] [Full Text] [Related]
20. AtGRX4, an Arabidopsis chloroplastic monothiol glutaredoxin, is able to suppress yeast grx5 mutant phenotypes and respond to oxidative stress. Cheng NH. FEBS Lett; 2008 Mar 19; 582(6):848-54. PubMed ID: 18275854 [Abstract] [Full Text] [Related] Page: [Next] [New Search]