These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 20148320

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.
    Schmölzer GM, O'Reilly M, Labossiere J, Lee TF, Cowan S, Nicoll J, Bigam DL, Cheung PY.
    Resuscitation; 2014 Feb; 85(2):270-5. PubMed ID: 24161768
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Comparison between manual and mechanical chest compressions during resuscitation in a pediatric animal model of asphyxial cardiac arrest.
    López J, Fernández SN, González R, Solana MJ, Urbano J, Toledo B, López-Herce J.
    PLoS One; 2017 Feb; 12(11):e0188846. PubMed ID: 29190801
    [Abstract] [Full Text] [Related]

  • 8. "Bystander" chest compressions and assisted ventilation independently improve outcome from piglet asphyxial pulseless "cardiac arrest".
    Berg RA, Hilwig RW, Kern KB, Ewy GA.
    Circulation; 2000 Apr 11; 101(14):1743-8. PubMed ID: 10758059
    [Abstract] [Full Text] [Related]

  • 9. Chest compressions superimposed with sustained inflations during cardiopulmonary resuscitation in asphyxiated pediatric piglets.
    Morin CMD, Cheung PY, Lee TF, O'Reilly M, Schmölzer GM.
    Pediatr Res; 2024 Mar 11; 95(4):988-995. PubMed ID: 36932182
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Continuous chest compressions with asynchronous ventilation improve survival in a neonatal swine model of asphyxial cardiac arrest.
    Aggelina A, Pantazopoulos I, Giokas G, Chalkias A, Mavrovounis G, Papalois A, Douvanas A, Xanthos T, Iacovidou N.
    Am J Emerg Med; 2021 Oct 11; 48():60-66. PubMed ID: 33839633
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. The Effect of Asphyxia Arrest Duration on a Pediatric End-Tidal CO2-Guided Chest Compression Delivery Model.
    Hamrick JL, Hamrick JT, O'Brien CE, Reyes M, Santos PT, Heitmiller SE, Kulikowicz E, Lee JK, Kudchadkar SR, Koehler RC, Hunt EA, Shaffner DH.
    Pediatr Crit Care Med; 2019 Jul 11; 20(7):e352-e361. PubMed ID: 31149967
    [Abstract] [Full Text] [Related]

  • 20. Myocardial perfusion and oxidative stress after 21% vs. 100% oxygen ventilation and uninterrupted chest compressions in severely asphyxiated piglets.
    Solevåg AL, Schmölzer GM, O'Reilly M, Lu M, Lee TF, Hornberger LK, Nakstad B, Cheung PY.
    Resuscitation; 2016 Sep 11; 106():7-13. PubMed ID: 27344929
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.