These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


417 related items for PubMed ID: 20148551

  • 1. Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite.
    Burton ED, Johnston SG, Watling K, Bush RT, Keene AF, Sullivan LA.
    Environ Sci Technol; 2010 Mar 15; 44(6):2016-21. PubMed ID: 20148551
    [Abstract] [Full Text] [Related]

  • 2. Redox transformation of arsenic by Fe(II)-activated goethite (alpha-FeOOH).
    Amstaetter K, Borch T, Larese-Casanova P, Kappler A.
    Environ Sci Technol; 2010 Jan 01; 44(1):102-8. PubMed ID: 20039739
    [Abstract] [Full Text] [Related]

  • 3. Sorption of arsenic(V) and arsenic(III) to schwertmannite.
    Burton ED, Bush RT, Johnston SG, Watling KM, Hocking RK, Sullivan LA, Parker GK.
    Environ Sci Technol; 2009 Dec 15; 43(24):9202-7. PubMed ID: 19921855
    [Abstract] [Full Text] [Related]

  • 4. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications.
    Asta MP, Cama J, Martínez M, Giménez J.
    J Hazard Mater; 2009 Nov 15; 171(1-3):965-72. PubMed ID: 19628332
    [Abstract] [Full Text] [Related]

  • 5. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED, Johnston SG, Kraal P, Bush RT, Claff S.
    Environ Sci Technol; 2013 Mar 05; 47(5):2221-9. PubMed ID: 23373718
    [Abstract] [Full Text] [Related]

  • 6. Redox stability of As(III) on schwertmannite surfaces.
    Paikaray S, Essilfie-Dughan J, Göttlicher J, Pollok K, Peiffer S.
    J Hazard Mater; 2014 Jan 30; 265():208-16. PubMed ID: 24361800
    [Abstract] [Full Text] [Related]

  • 7. Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater.
    Liao Y, Liang J, Zhou L.
    Chemosphere; 2011 Apr 30; 83(3):295-301. PubMed ID: 21239041
    [Abstract] [Full Text] [Related]

  • 8. As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure.
    Paikaray S, Göttlicher J, Peiffer S.
    Chemosphere; 2012 Feb 30; 86(6):557-64. PubMed ID: 22138337
    [Abstract] [Full Text] [Related]

  • 9. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH, Jean JS, Lee MK, Liu CC, Bundschuh J, Yang HJ, Lee JF, Lee YC.
    Water Res; 2010 Nov 30; 44(19):5556-74. PubMed ID: 20875661
    [Abstract] [Full Text] [Related]

  • 10. Chromium(III) substitution inhibits the Fe(II)-accelerated transformation of schwertmannite.
    Choppala G, Burton ED.
    PLoS One; 2018 Nov 30; 13(12):e0208355. PubMed ID: 30517205
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Thiocyanate-induced labilization of schwertmannite: Impacts and mechanisms.
    Fan C, Guo C, Zhang J, Ding C, Li X, Reinfelder JR, Lu G, Shi Z, Dang Z.
    J Environ Sci (China); 2019 Jun 30; 80():218-228. PubMed ID: 30952339
    [Abstract] [Full Text] [Related]

  • 13. Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage.
    Casiot C, Lebrun S, Morin G, Bruneel O, Personné JC, Elbaz-Poulichet F.
    Sci Total Environ; 2005 Jul 15; 347(1-3):122-30. PubMed ID: 16084973
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Adsorption and desorption of arsenic on an oxisol and its constituents.
    Ladeira AC, Ciminelli VS.
    Water Res; 2004 Apr 15; 38(8):2087-94. PubMed ID: 15087189
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues.
    Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F.
    Environ Sci Technol; 2002 Apr 15; 36(8):1712-9. PubMed ID: 11993868
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.
    Reinsch BC, Forsberg B, Penn RL, Kim CS, Lowry GV.
    Environ Sci Technol; 2010 May 01; 44(9):3455-61. PubMed ID: 20380376
    [Abstract] [Full Text] [Related]

  • 20. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil.
    Weber FA, Hofacker AF, Voegelin A, Kretzschmar R.
    Environ Sci Technol; 2010 Jan 01; 44(1):116-22. PubMed ID: 20039741
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.