These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
398 related items for PubMed ID: 20149698
1. Operation of a 500 MHz high temperature superconducting NMR: towards an NMR spectrometer operating beyond 1 GHz. Yanagisawa Y, Nakagome H, Tennmei K, Hamada M, Yoshikawa M, Otsuka A, Hosono M, Kiyoshi T, Takahashi M, Yamazaki T, Maeda H. J Magn Reson; 2010 Apr; 203(2):274-82. PubMed ID: 20149698 [Abstract] [Full Text] [Related]
2. Towards beyond-1 GHz solution NMR: internal 2H lock operation in an external current mode. Yanagisawa Y, Nakagome H, Hosono M, Hamada M, Kiyoshi T, Hobo F, Takahashi M, Yamazaki T, Maeda H. J Magn Reson; 2008 Jun; 192(2):329-37. PubMed ID: 18424127 [Abstract] [Full Text] [Related]
3. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: external lock operation in an external current mode for a 500 MHz nuclear magnetic resonance. Takahashi M, Ebisawa Y, Tennmei K, Yanagisawa Y, Hosono M, Takasugi K, Hase T, Miyazaki T, Fujito T, Nakagome H, Kiyoshi T, Yamazaki T, Maeda H. Rev Sci Instrum; 2012 Oct; 83(10):105110. PubMed ID: 23126807 [Abstract] [Full Text] [Related]
4. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz. Yanagisawa Y, Piao R, Iguchi S, Nakagome H, Takao T, Kominato K, Hamada M, Matsumoto S, Suematsu H, Jin X, Takahashi M, Yamazaki T, Maeda H. J Magn Reson; 2014 Dec; 249():38-48. PubMed ID: 25462945 [Abstract] [Full Text] [Related]
5. A unilateral NMR magnet for sub-structure analysis in the built environment: the Surface GARField. McDonald PJ, Aptaker PS, Mitchell J, Mulheron M. J Magn Reson; 2007 Mar; 185(1):1-11. PubMed ID: 17123850 [Abstract] [Full Text] [Related]
6. High-resolution NMR with resistive and hybrid magnets: deconvolution using a field-fluctuation signal. Iijima T, Takegoshi K, Hashi K, Fujito T, Shimizu T. J Magn Reson; 2007 Feb; 184(2):258-62. PubMed ID: 17123849 [Abstract] [Full Text] [Related]
7. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications. Girard O, Ginefri JC, Poirier-Quinot M, Darrasse L. Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742 [Abstract] [Full Text] [Related]
9. Design, construction, and validation of a 1-mm triple-resonance high-temperature-superconducting probe for NMR. Brey WW, Edison AS, Nast RE, Rocca JR, Saha S, Withers RS. J Magn Reson; 2006 Apr; 179(2):290-3. PubMed ID: 16423543 [Abstract] [Full Text] [Related]
10. A High-Resolution 1.3-GHz/54-mm LTS/HTS NMR Magnet. Iwasa Y, Bascuñán J, Hahn S, Voccio J, Kim Y, Lécrevisse T, Song J, Kajikawa K. IEEE Trans Appl Supercond; 2015 Jun; 25(3):. PubMed ID: 32952376 [Abstract] [Full Text] [Related]
11. High homogeneity B(1) 30.2 MHz Nuclear Magnetic Resonance Probe for off-resonance relaxation times measurements. Baranowski M, Woźniak-Braszak A, Jurga K. J Magn Reson; 2011 Jan; 208(1):163-6. PubMed ID: 21115261 [Abstract] [Full Text] [Related]
12. High resolution NMR measurements using a 400MHz NMR with an (RE)Ba2Cu3O7-x high-temperature superconducting inner coil: Towards a compact super-high-field NMR. Piao R, Iguchi S, Hamada M, Matsumoto S, Suematsu H, Saito AT, Li J, Nakagome H, Takao T, Takahashi M, Maeda H, Yanagisawa Y. J Magn Reson; 2016 Feb; 263():164-171. PubMed ID: 26778351 [Abstract] [Full Text] [Related]
13. On the 600 MHz HTS Insert for a 1.3 GHz NMR Magnet. Bascuñán J, Hahn S, Park DK, Kim Y, Iwasa Y. IEEE Trans Appl Supercond; 2012 Jun; 22(3):. PubMed ID: 31171896 [Abstract] [Full Text] [Related]
14. Gradient coil design using Bi-2223 high temperature superconducting tape for magnetic resonance imaging. Yuan J, Shen GX. Med Eng Phys; 2007 May; 29(4):442-8. PubMed ID: 16875861 [Abstract] [Full Text] [Related]
15. Detection of NMR signals with a radio-frequency atomic magnetometer. Savukov IM, Seltzer SJ, Romalis MV. J Magn Reson; 2007 Apr; 185(2):214-20. PubMed ID: 17208476 [Abstract] [Full Text] [Related]
16. A simple, small and low cost permanent magnet design to produce homogeneous magnetic fields. Manz B, Benecke M, Volke F. J Magn Reson; 2008 May; 192(1):131-8. PubMed ID: 18314366 [Abstract] [Full Text] [Related]
17. Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. Gor'kov PL, Chekmenev EY, Li C, Cotten M, Buffy JJ, Traaseth NJ, Veglia G, Brey WW. J Magn Reson; 2007 Mar; 185(1):77-93. PubMed ID: 17174130 [Abstract] [Full Text] [Related]