These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


375 related items for PubMed ID: 20152614

  • 1. Transmission spectrums and retinal blue-light irradiance values of untinted and yellow-tinted intraocular lenses.
    Tanito M, Okuno T, Ishiba Y, Ohira A.
    J Cataract Refract Surg; 2010 Feb; 36(2):299-307. PubMed ID: 20152614
    [Abstract] [Full Text] [Related]

  • 2. Measurements of transmission spectrums and estimation of retinal blue-light irradiance values of currently available clear and yellow-tinted intraocular lenses.
    Tanito M, Okuno T, Ishiba Y, Ohira A.
    Jpn J Ophthalmol; 2012 Jan; 56(1):82-90. PubMed ID: 22094397
    [Abstract] [Full Text] [Related]

  • 3. Estimations of Retinal Blue-Light Irradiance Values and Melatonin Suppression Indices Through Clear and Yellow-Tinted Intraocular Lenses.
    Tanito M, Sano I, Okuno T, Ishiba Y, Ohira A.
    Adv Exp Med Biol; 2018 Jan; 1074():53-60. PubMed ID: 29721927
    [Abstract] [Full Text] [Related]

  • 4. Cytoprotective effects of a blue light-filtering intraocular lens on human retinal pigment epithelium by reducing phototoxic effects on vascular endothelial growth factor-alpha, Bax, and Bcl-2 expression.
    Kernt M, Neubauer AS, Liegl R, Eibl KH, Alge CS, Lackerbauer CA, Ulbig MW, Kampik A.
    J Cataract Refract Surg; 2009 Feb; 35(2):354-62. PubMed ID: 19185255
    [Abstract] [Full Text] [Related]

  • 5. Estimation of the melatonin suppression index through clear and yellow-tinted intraocular lenses.
    Sano I, Tanito M, Okuno T, Ishiba Y, Ohira A.
    Jpn J Ophthalmol; 2014 Jul; 58(4):320-6. PubMed ID: 24777840
    [Abstract] [Full Text] [Related]

  • 6. Light-transmission-spectrum comparison of foldable intraocular lenses.
    Ernest PH.
    J Cataract Refract Surg; 2004 Aug; 30(8):1755-8. PubMed ID: 15313303
    [Abstract] [Full Text] [Related]

  • 7. Transmittance characteristics of ultraviolet and blue-light-filtering intraocular lenses.
    Brockmann C, Schulz M, Laube T.
    J Cataract Refract Surg; 2008 Jul; 34(7):1161-6. PubMed ID: 18571086
    [Abstract] [Full Text] [Related]

  • 8. Blue-light filtering intraocular lens in patients with diabetes: contrast sensitivity and chromatic discrimination.
    Rodríguez-Galietero A, Montés-Micó R, Muñoz G, Albarrán-Diego C.
    J Cataract Refract Surg; 2005 Nov; 31(11):2088-92. PubMed ID: 16412920
    [Abstract] [Full Text] [Related]

  • 9. Relative effectiveness of a blue light-filtering intraocular lens for photoentrainment of the circadian rhythm.
    Patel AS, Dacey DM.
    J Cataract Refract Surg; 2009 Mar; 35(3):529-39. PubMed ID: 19251148
    [Abstract] [Full Text] [Related]

  • 10. AcrySof Natural intraocular lens optical characteristics during and after different doses of ultraviolet-visible light illumination.
    Mencucci R, Mercatelli L, Fusi F, Ponchietti C, Monici M, Menchini U.
    J Cataract Refract Surg; 2006 Nov; 32(11):1961-5. PubMed ID: 17081904
    [Abstract] [Full Text] [Related]

  • 11. Protective effects of soft acrylic yellow filter against blue light-induced retinal damage in rats.
    Tanito M, Kaidzu S, Anderson RE.
    Exp Eye Res; 2006 Dec; 83(6):1493-504. PubMed ID: 16997296
    [Abstract] [Full Text] [Related]

  • 12. Spectral transmittance of intraocular lenses under natural and artificial illumination: criteria analysis for choosing a suitable filter.
    Artigas JM, Felipe A, Navea A, Artigas C, García-Domene MC.
    Ophthalmology; 2011 Jan; 118(1):3-8. PubMed ID: 20801517
    [Abstract] [Full Text] [Related]

  • 13. Macular pigment changes in pseudophakic eyes quantified with resonance Raman spectroscopy.
    Obana A, Tanito M, Gohto Y, Gellermann W, Okazaki S, Ohira A.
    Ophthalmology; 2011 Sep; 118(9):1852-8. PubMed ID: 21641040
    [Abstract] [Full Text] [Related]

  • 14. New approach to evaluate retinal protection by intraocular lenses against age-related lipofuscin accumulation-mediated retinal phototoxicity.
    Carson D, Margrain TH, Patel A.
    J Cataract Refract Surg; 2008 Oct; 34(10):1785-92. PubMed ID: 18812134
    [Abstract] [Full Text] [Related]

  • 15. Ultraviolet-B phototoxicity and hypothetical photomelanomagenesis: intraocular and crystalline lens photoprotection.
    Mainster MA, Turner PL.
    Am J Ophthalmol; 2010 Apr; 149(4):543-9. PubMed ID: 20346776
    [Abstract] [Full Text] [Related]

  • 16. Comparison of contrast sensitivity and color discrimination after clear and yellow intraocular lens implantation.
    Rodríguez-Galietero A, Montés-Micó R, Muñoz G, Albarrán-Diego C.
    J Cataract Refract Surg; 2005 Sep; 31(9):1736-40. PubMed ID: 16246777
    [Abstract] [Full Text] [Related]

  • 17. Luminance contrast with clear and yellow-tinted intraocular lenses.
    Pierre A, Wittich W, Faubert J, Overbury O.
    J Cataract Refract Surg; 2007 Jul; 33(7):1248-52. PubMed ID: 17586382
    [Abstract] [Full Text] [Related]

  • 18. Visual function in patients with yellow tinted intraocular lenses compared with vision in patients with non-tinted intraocular lenses.
    Hayashi K, Hayashi H.
    Br J Ophthalmol; 2006 Aug; 90(8):1019-23. PubMed ID: 16597662
    [Abstract] [Full Text] [Related]

  • 19. Sharp cutoff filters in intraocular lenses optimize the balance between light reception and light protection.
    van de Kraats J, van Norren D.
    J Cataract Refract Surg; 2007 May; 33(5):879-87. PubMed ID: 17466865
    [Abstract] [Full Text] [Related]

  • 20. New photochromic foldable intraocular lens: preliminary study of feasibility and biocompatibility.
    Werner L, Mamalis N, Romaniv N, Haymore J, Haugen B, Hunter B, Stevens S.
    J Cataract Refract Surg; 2006 Jul; 32(7):1214-21. PubMed ID: 16857512
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.