These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
442 related items for PubMed ID: 2015390
1. Phosphorus-31 two-dimensional solid-state exchange NMR. Application to model membrane and biological systems. Fenske DB, Jarrell HC. Biophys J; 1991 Jan; 59(1):55-69. PubMed ID: 2015390 [Abstract] [Full Text] [Related]
2. Slow motions in lipid bilayers. Direct detection by two-dimensional solid-state deuterium nuclear magnetic resonance. Auger M, Smith IC, Jarrell HC. Biophys J; 1991 Jan; 59(1):31-8. PubMed ID: 2015388 [Abstract] [Full Text] [Related]
3. Membrane topology of a 14-mer model amphipathic peptide: a solid-state NMR spectroscopy study. Ouellet M, Doucet JD, Voyer N, Auger M. Biochemistry; 2007 Jun 05; 46(22):6597-606. PubMed ID: 17487978 [Abstract] [Full Text] [Related]
4. Measurement of the lateral diffusion of dipalmitoylphosphatidylcholine adsorbed on silica beads in the absence and presence of melittin: a 31P two-dimensional exchange solid-state NMR study. Picard F, Paquet MJ, Dufourc EJ, Auger M. Biophys J; 1998 Feb 05; 74(2 Pt 1):857-68. PubMed ID: 9533697 [Abstract] [Full Text] [Related]
5. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Filippov A, Orädd G, Lindblom G. Biophys J; 2003 May 05; 84(5):3079-86. PubMed ID: 12719238 [Abstract] [Full Text] [Related]
6. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Weisz K, Gröbner G, Mayer C, Stohrer J, Kothe G. Biochemistry; 1992 Feb 04; 31(4):1100-12. PubMed ID: 1734959 [Abstract] [Full Text] [Related]
7. Influence of perfluorinated compounds on the properties of model lipid membranes. Matyszewska D, Tappura K, Orädd G, Bilewicz R. J Phys Chem B; 2007 Aug 23; 111(33):9908-18. PubMed ID: 17672485 [Abstract] [Full Text] [Related]
8. Cyclodextrin-induced lipid lateral separation in DMPC membranes: (2)H nuclear magnetic resonance study. Roux M, Auzely-Velty R, Djedaini-Pilard F, Perly B. Biophys J; 2002 Feb 23; 82(2):813-22. PubMed ID: 11806923 [Abstract] [Full Text] [Related]
9. Orientation of specifically 13C=O labeled phosphatidylcholine multilayers from polarized attenuated total reflection FT-IR spectroscopy. Hübner W, Mantsch HH. Biophys J; 1991 Jun 23; 59(6):1261-72. PubMed ID: 1873463 [Abstract] [Full Text] [Related]
10. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG, Mannock DA, Lewis RN, McElhaney RN. Chem Phys Lipids; 2014 Jan 23; 177():71-90. PubMed ID: 24296232 [Abstract] [Full Text] [Related]
11. Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles. Morini MA, Sierra MB, Pedroni VI, Alarcon LM, Appignanesi GA, Disalvo EA. Colloids Surf B Biointerfaces; 2015 Jul 01; 131():54-8. PubMed ID: 25950496 [Abstract] [Full Text] [Related]
12. Lateral diffusion of molecules in two-component lipid bilayer: a Monte Carlo simulation study. Sugár IP, Biltonen RL. J Phys Chem B; 2005 Apr 21; 109(15):7373-86. PubMed ID: 16851844 [Abstract] [Full Text] [Related]
13. A study of the headgroup motion of sphingomyelin using 31P NMR and an analytically soluble model. Malcolm IC, Ross JC, Higinbotham J. Solid State Nucl Magn Reson; 2005 Jun 21; 27(4):247-56. PubMed ID: 15799883 [Abstract] [Full Text] [Related]
14. Lateral diffusion coefficients of separate lipid species in a ternary raft-forming bilayer: a Pfg-NMR multinuclear study. Orädd G, Westerman PW, Lindblom G. Biophys J; 2005 Jul 21; 89(1):315-20. PubMed ID: 15863478 [Abstract] [Full Text] [Related]
15. Influence of the long-chain/short-chain amphiphile ratio on lateral diffusion of PEG-lipid in magnetically aligned lipid bilayers as measured via pulsed-field-gradient NMR. Soong R, Macdonald PM. Biophys J; 2005 Sep 21; 89(3):1850-60. PubMed ID: 15994903 [Abstract] [Full Text] [Related]
16. Anomalous diffusion in a gel-fluid lipid environment: a combined solid-state NMR and obstructed random-walk perspective. Arnold A, Paris M, Auger M. Biophys J; 2004 Oct 21; 87(4):2456-69. PubMed ID: 15454443 [Abstract] [Full Text] [Related]
17. High-pressure 31P NMR study of dipalmitoylphosphatidylcholine bilayers. Peng X, Jonas J. Biochemistry; 1992 Jul 21; 31(28):6383-90. PubMed ID: 1633150 [Abstract] [Full Text] [Related]
18. Minimal radius of curvature of lipid bilayers in the gel phase state corresponds to the dimension of biomembrane structures "caveolae". Meyer HW, Westermann M, Stumpf M, Richter W, Ulrich AS, Hoischen C. J Struct Biol; 1998 Dec 01; 124(1):77-87. PubMed ID: 9931276 [Abstract] [Full Text] [Related]
19. Transbilayer movement of phospholipids at the main phase transition of lipid membranes: implications for rapid flip-flop in biological membranes. John K, Schreiber S, Kubelt J, Herrmann A, Müller P. Biophys J; 2002 Dec 01; 83(6):3315-23. PubMed ID: 12496099 [Abstract] [Full Text] [Related]
20. Phase structures of binary lipid bilayers as revealed by permeability of small molecules. Xiang TX, Anderson BD. Biochim Biophys Acta; 1998 Mar 06; 1370(1):64-76. PubMed ID: 9518554 [Abstract] [Full Text] [Related] Page: [Next] [New Search]