These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. TusA (YhhP) and IscS are required for molybdenum cofactor-dependent base-analog detoxification. Kozmin SG, Stepchenkova EI, Schaaper RM. Microbiologyopen; 2013 Oct; 2(5):743-55. PubMed ID: 23894086 [Abstract] [Full Text] [Related]
5. Hypersensitivity of Escherichia coli Delta(uvrB-bio) mutants to 6-hydroxylaminopurine and other base analogs is due to a defect in molybdenum cofactor biosynthesis. Kozmin SG, Pavlov YI, Dunn RL, Schaaper RM. J Bacteriol; 2000 Jun; 182(12):3361-7. PubMed ID: 10852865 [Abstract] [Full Text] [Related]
6. Genetic characterization of moaB mutants of Escherichia coli. Kozmin SG, Schaaper RM. Res Microbiol; 2013 Sep; 164(7):689-94. PubMed ID: 23680484 [Abstract] [Full Text] [Related]
7. Molecular genetic analysis of the moa operon of Escherichia coli K-12 required for molybdenum cofactor biosynthesis. Rivers SL, McNairn E, Blasco F, Giordano G, Boxer DH. Mol Microbiol; 1993 Jun; 8(6):1071-81. PubMed ID: 8361352 [Abstract] [Full Text] [Related]
8. The sequence of a symbiotically essential Bradyrhizobium japonicum operon consisting of trpD, trpC and a moaC-like gene. Kuykendall LD, Hunter WJ. Biochim Biophys Acta; 1997 Feb 28; 1350(3):277-81. PubMed ID: 9061023 [Abstract] [Full Text] [Related]
9. Regulation of the molybdate transport operon, modABCD, of Escherichia coli in response to molybdate availability. Rech S, Deppenmeier U, Gunsalus RP. J Bacteriol; 1995 Feb 28; 177(4):1023-9. PubMed ID: 7860583 [Abstract] [Full Text] [Related]