These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


240 related items for PubMed ID: 20157569

  • 1. Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle.
    Ljubicic V, Joseph AM, Adhihetty PJ, Huang JH, Saleem A, Uguccioni G, Hood DA.
    Aging (Albany NY); 2009 Sep 12; 1(9):818-30. PubMed ID: 20157569
    [Abstract] [Full Text] [Related]

  • 2. Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle.
    Adhihetty PJ, Ljubicic V, Hood DA.
    Am J Physiol Endocrinol Metab; 2007 Mar 12; 292(3):E748-55. PubMed ID: 17106065
    [Abstract] [Full Text] [Related]

  • 3. Mitochondrial function and apoptotic susceptibility in aging skeletal muscle.
    Chabi B, Ljubicic V, Menzies KJ, Huang JH, Saleem A, Hood DA.
    Aging Cell; 2008 Jan 12; 7(1):2-12. PubMed ID: 18028258
    [Abstract] [Full Text] [Related]

  • 4. Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions.
    Connor MK, Bezborodova O, Escobar CP, Hood DA.
    J Appl Physiol (1985); 2000 May 12; 88(5):1601-6. PubMed ID: 10797119
    [Abstract] [Full Text] [Related]

  • 5. Effect of prior chronic contractile activity on mitochondrial function and apoptotic protein expression in denervated muscle.
    O'Leary MF, Hood DA.
    J Appl Physiol (1985); 2008 Jul 12; 105(1):114-20. PubMed ID: 18450984
    [Abstract] [Full Text] [Related]

  • 6. Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity.
    Joseph AM, Ljubicic V, Adhihetty PJ, Hood DA.
    Am J Physiol Cell Physiol; 2010 Jun 12; 298(6):C1308-14. PubMed ID: 20107041
    [Abstract] [Full Text] [Related]

  • 7. Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis.
    Ljubicic V, Adhihetty PJ, Hood DA.
    J Appl Physiol (1985); 2004 Sep 12; 97(3):976-83. PubMed ID: 15145919
    [Abstract] [Full Text] [Related]

  • 8. Contractile activity-induced adaptations in the mitochondrial protein import system.
    Takahashi M, Chesley A, Freyssenet D, Hood DA.
    Am J Physiol; 1998 May 12; 274(5):C1380-7. PubMed ID: 9612226
    [Abstract] [Full Text] [Related]

  • 9. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle.
    Adhihetty PJ, O'Leary MF, Chabi B, Wicks KL, Hood DA.
    J Appl Physiol (1985); 2007 Mar 12; 102(3):1143-51. PubMed ID: 17122379
    [Abstract] [Full Text] [Related]

  • 10. Protein import into subsarcolemmal and intermyofibrillar skeletal muscle mitochondria. Differential import regulation in distinct subcellular regions.
    Takahashi M, Hood DA.
    J Biol Chem; 1996 Nov 01; 271(44):27285-91. PubMed ID: 8910303
    [Abstract] [Full Text] [Related]

  • 11. Effect of age on the processing and import of matrix-destined mitochondrial proteins in skeletal muscle.
    Huang JH, Joseph AM, Ljubicic V, Iqbal S, Hood DA.
    J Gerontol A Biol Sci Med Sci; 2010 Feb 01; 65(2):138-46. PubMed ID: 20045872
    [Abstract] [Full Text] [Related]

  • 12. Diminished contraction-induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle.
    Ljubicic V, Hood DA.
    Aging Cell; 2009 Aug 01; 8(4):394-404. PubMed ID: 19416128
    [Abstract] [Full Text] [Related]

  • 13. The role of PGC-1alpha on mitochondrial function and apoptotic susceptibility in muscle.
    Adhihetty PJ, Uguccioni G, Leick L, Hidalgo J, Pilegaard H, Hood DA.
    Am J Physiol Cell Physiol; 2009 Jul 01; 297(1):C217-25. PubMed ID: 19439529
    [Abstract] [Full Text] [Related]

  • 14. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.
    Javadov S, Jang S, Rodriguez-Reyes N, Rodriguez-Zayas AE, Soto Hernandez J, Krainz T, Wipf P, Frontera W.
    Oncotarget; 2015 Nov 24; 6(37):39469-81. PubMed ID: 26415224
    [Abstract] [Full Text] [Related]

  • 15. Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli.
    Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA.
    Am J Physiol Cell Physiol; 2005 Oct 24; 289(4):C994-C1001. PubMed ID: 15901602
    [Abstract] [Full Text] [Related]

  • 16. Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity.
    Memme JM, Oliveira AN, Hood DA.
    Am J Physiol Cell Physiol; 2016 Jun 01; 310(11):C1024-36. PubMed ID: 27122157
    [Abstract] [Full Text] [Related]

  • 17. The role of Nrf2 in skeletal muscle contractile and mitochondrial function.
    Crilly MJ, Tryon LD, Erlich AT, Hood DA.
    J Appl Physiol (1985); 2016 Sep 01; 121(3):730-40. PubMed ID: 27471236
    [Abstract] [Full Text] [Related]

  • 18. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle.
    Saleem A, Adhihetty PJ, Hood DA.
    Physiol Genomics; 2009 Mar 03; 37(1):58-66. PubMed ID: 19106183
    [Abstract] [Full Text] [Related]

  • 19. Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations.
    Kim Y, Hood DA.
    Physiol Rep; 2017 Jul 03; 5(14):. PubMed ID: 28720712
    [Abstract] [Full Text] [Related]

  • 20. The importance of PGC-1α in contractile activity-induced mitochondrial adaptations.
    Uguccioni G, Hood DA.
    Am J Physiol Endocrinol Metab; 2011 Feb 03; 300(2):E361-71. PubMed ID: 21081705
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.