These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


155 related items for PubMed ID: 2016309

  • 1. Noninvasive tracing of Krebs cycle metabolism in liver.
    Magnusson I, Schumann WC, Bartsch GE, Chandramouli V, Kumaran K, Wahren J, Landau BR.
    J Biol Chem; 1991 Apr 15; 266(11):6975-84. PubMed ID: 2016309
    [Abstract] [Full Text] [Related]

  • 2. 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux.
    Landau BR, Schumann WC, Chandramouli V, Magnusson I, Kumaran K, Wahren J.
    Am J Physiol; 1993 Oct 15; 265(4 Pt 1):E636-47. PubMed ID: 8238339
    [Abstract] [Full Text] [Related]

  • 3. Estimates of Krebs cycle activity and contributions of gluconeogenesis to hepatic glucose production in fasting healthy subjects and IDDM patients.
    Landau BR, Chandramouli V, Schumann WC, Ekberg K, Kumaran K, Kalhan SC, Wahren J.
    Diabetologia; 1995 Jul 15; 38(7):831-8. PubMed ID: 7556986
    [Abstract] [Full Text] [Related]

  • 4. Metabolism of [2-14C]acetate and its use in assessing hepatic Krebs cycle activity and gluconeogenesis.
    Schumann WC, Magnusson I, Chandramouli V, Kumaran K, Wahren J, Landau BR.
    J Biol Chem; 1991 Apr 15; 266(11):6985-90. PubMed ID: 2016310
    [Abstract] [Full Text] [Related]

  • 5. Isotopomer studies of gluconeogenesis and the Krebs cycle with 13C-labeled lactate.
    Katz J, Wals P, Lee WN.
    J Biol Chem; 1993 Dec 05; 268(34):25509-21. PubMed ID: 7902352
    [Abstract] [Full Text] [Related]

  • 6. Use of 14CO2 in estimating rates of hepatic gluconeogenesis.
    Esenmo E, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR.
    Am J Physiol; 1992 Jul 05; 263(1 Pt 1):E36-41. PubMed ID: 1322046
    [Abstract] [Full Text] [Related]

  • 7. [14C]bicarbonate fixation into glucose and other metabolites in the liver of the starved rat under halothane anaesthesia. Metabolic channelling of mitochondrial oxaloacetate.
    Heath DF, Rose JG.
    Biochem J; 1985 May 01; 227(3):851-65. PubMed ID: 3924030
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Hepatic glycogen in humans. II. Gluconeogenetic formation after oral and intravenous glucose.
    Radziuk J.
    Am J Physiol; 1989 Aug 01; 257(2 Pt 1):E158-69. PubMed ID: 2669512
    [Abstract] [Full Text] [Related]

  • 12. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates in skeletal muscle.
    Lee SH, Davis EJ.
    J Biol Chem; 1979 Jan 25; 254(2):420-30. PubMed ID: 762069
    [Abstract] [Full Text] [Related]

  • 13. A simple model for alanine metabolism in isolated rat hepatocytes.
    Martin G, Vincent N, Combet J, Baverel G.
    Biochim Biophys Acta; 1993 Jan 17; 1175(2):161-73. PubMed ID: 8418895
    [Abstract] [Full Text] [Related]

  • 14. Rates of gluconeogenesis and citric acid cycle in perfused livers, assessed from the mass spectrometric assay of the 13C labeling pattern of glutamate.
    Di Donato L, Des Rosiers C, Montgomery JA, David F, Garneau M, Brunengraber H.
    J Biol Chem; 1993 Feb 25; 268(6):4170-80. PubMed ID: 8095046
    [Abstract] [Full Text] [Related]

  • 15. Model to examine pathways of carbon flux from lactate to glucose at the first branch point in gluconeogenesis.
    Blackard WG, Clore JN.
    J Biol Chem; 1988 Nov 15; 263(32):16725-30. PubMed ID: 3182810
    [Abstract] [Full Text] [Related]

  • 16. Hepatocyte heterogeneity in uptake and metabolism of malate and related dicarboxylates in perfused rat liver.
    Stoll B, Hüssinger D.
    Eur J Biochem; 1991 Jan 01; 195(1):121-9. PubMed ID: 1899378
    [Abstract] [Full Text] [Related]

  • 17. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo.
    Heath DF, Threlfall CJ.
    Biochem J; 1968 Nov 01; 110(2):337-62. PubMed ID: 5726212
    [Abstract] [Full Text] [Related]

  • 18. Glutamine metabolism in AS-30D hepatoma cells. Evidence for its conversion into lipids via reductive carboxylation.
    Holleran AL, Briscoe DA, Fiskum G, Kelleher JK.
    Mol Cell Biochem; 1995 Nov 22; 152(2):95-101. PubMed ID: 8751155
    [Abstract] [Full Text] [Related]

  • 19. A quantitative analysis of the metabolic pathways of hepatic glucose synthesis in vivo with 13C-labeled substrates.
    Kalderon B, Gopher A, Lapidot A.
    FEBS Lett; 1987 Mar 09; 213(1):209-14. PubMed ID: 2881806
    [Abstract] [Full Text] [Related]

  • 20. Gluconeogenesis and glucuronidation in liver in vivo and the heterogeneity of hepatocyte function.
    Ekberg K, Chandramouli V, Kumaran K, Schumann WC, Wahren J, Landau BR.
    J Biol Chem; 1995 Sep 15; 270(37):21715-7. PubMed ID: 7665589
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.