These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1547 related items for PubMed ID: 20166220

  • 21. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering.
    Park SA, Lee SH, Kim WD.
    Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553
    [Abstract] [Full Text] [Related]

  • 22. Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells.
    Zandi M, Mirzadeh H, Mayer C, Urch H, Eslaminejad MB, Bagheri F, Mivehchi H.
    J Biomed Mater Res A; 2010 Mar 15; 92(4):1244-55. PubMed ID: 19322878
    [Abstract] [Full Text] [Related]

  • 23. Crosslinked poly(epsilon-caprolactone/D,L-lactide)/bioactive glass composite scaffolds for bone tissue engineering.
    Meretoja VV, Helminen AO, Korventausta JJ, Haapa-aho V, Seppälä JV, Närhi TO.
    J Biomed Mater Res A; 2006 May 15; 77(2):261-8. PubMed ID: 16392138
    [Abstract] [Full Text] [Related]

  • 24. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N, Pavasant P, Supaphol P.
    J Biomater Sci Polym Ed; 2014 May 15; 25(17):1986-2008. PubMed ID: 25291106
    [Abstract] [Full Text] [Related]

  • 25. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J, Janney C, Akbarzadeh R, Focke C, Subramanian A, Smith T, McKinney J, Liu J, Schmitz J, James PF, Yousefi AM.
    J Biomater Sci Polym Ed; 2014 May 15; 25(16):1856-74. PubMed ID: 25178801
    [Abstract] [Full Text] [Related]

  • 26. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles.
    Wutticharoenmongkol P, Pavasant P, Supaphol P.
    Biomacromolecules; 2007 Aug 15; 8(8):2602-10. PubMed ID: 17655356
    [Abstract] [Full Text] [Related]

  • 27. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering.
    Kim JY, Lee TJ, Cho DW, Kim BS.
    J Biomater Sci Polym Ed; 2010 Aug 15; 21(6-7):951-62. PubMed ID: 20482995
    [Abstract] [Full Text] [Related]

  • 28. Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: an in vitro study.
    Sharaf B, Faris CB, Abukawa H, Susarla SM, Vacanti JP, Kaban LB, Troulis MJ.
    J Oral Maxillofac Surg; 2012 Mar 15; 70(3):647-56. PubMed ID: 22079064
    [Abstract] [Full Text] [Related]

  • 29. A comparative analysis of scaffold material modifications for load-bearing applications in bone tissue engineering.
    Chim H, Hutmacher DW, Chou AM, Oliveira AL, Reis RL, Lim TC, Schantz JT.
    Int J Oral Maxillofac Surg; 2006 Oct 15; 35(10):928-34. PubMed ID: 16762529
    [Abstract] [Full Text] [Related]

  • 30. In vivo bone formation from human embryonic stem cell-derived osteogenic cells in poly(d,l-lactic-co-glycolic acid)/hydroxyapatite composite scaffolds.
    Kim S, Kim SS, Lee SH, Eun Ahn S, Gwak SJ, Song JH, Kim BS, Chung HM.
    Biomaterials; 2008 Mar 15; 29(8):1043-53. PubMed ID: 18023477
    [Abstract] [Full Text] [Related]

  • 31. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S, Zhang B, Yu L, Pan Z.
    J Biomed Mater Res A; 2010 Jul 15; 94(1):259-70. PubMed ID: 20166224
    [Abstract] [Full Text] [Related]

  • 32. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I.
    Acta Biomater; 2011 Feb 15; 7(2):809-20. PubMed ID: 20849985
    [Abstract] [Full Text] [Related]

  • 33. Inorganic-organic hybrid scaffolds for osteochondral regeneration.
    Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS.
    J Biomed Mater Res A; 2010 Jul 15; 94(1):112-21. PubMed ID: 20128006
    [Abstract] [Full Text] [Related]

  • 34. A novel collagen/hydroxyapatite/poly(lactide-co-ε-caprolactone) biodegradable and bioactive 3D porous scaffold for bone regeneration.
    Akkouch A, Zhang Z, Rouabhia M.
    J Biomed Mater Res A; 2011 Mar 15; 96(4):693-704. PubMed ID: 21284080
    [Abstract] [Full Text] [Related]

  • 35. Poly-epsilon-caprolactone/hydroxyapatite composites for bone regeneration: in vitro characterization and human osteoblast response.
    Causa F, Netti PA, Ambrosio L, Ciapetti G, Baldini N, Pagani S, Martini D, Giunti A.
    J Biomed Mater Res A; 2006 Jan 15; 76(1):151-62. PubMed ID: 16258959
    [Abstract] [Full Text] [Related]

  • 36. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering.
    Laschke MW, Strohe A, Menger MD, Alini M, Eglin D.
    Acta Biomater; 2010 Jun 15; 6(6):2020-7. PubMed ID: 20004748
    [Abstract] [Full Text] [Related]

  • 37. Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells.
    Venugopal J, Low S, Choon AT, Kumar AB, Ramakrishna S.
    J Biomed Mater Res A; 2008 May 15; 85(2):408-17. PubMed ID: 17701970
    [Abstract] [Full Text] [Related]

  • 38. A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering.
    Kim BS, Yang SS, Lee J.
    J Biomed Mater Res B Appl Biomater; 2014 Jul 15; 102(5):943-51. PubMed ID: 24259295
    [Abstract] [Full Text] [Related]

  • 39. PCL-coated hydroxyapatite scaffold derived from cuttlefish bone: morphology, mechanical properties and bioactivity.
    Milovac D, Gallego Ferrer G, Ivankovic M, Ivankovic H.
    Mater Sci Eng C Mater Biol Appl; 2014 Jan 01; 34():437-45. PubMed ID: 24268280
    [Abstract] [Full Text] [Related]

  • 40. Processing/structure/property relationship of multi-scaled PCL and PCL-HA composite scaffolds prepared via gas foaming and NaCl reverse templating.
    Salerno A, Zeppetelli S, Di Maio E, Iannace S, Netti PA.
    Biotechnol Bioeng; 2011 Apr 01; 108(4):963-76. PubMed ID: 21404268
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 78.