These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


83 related items for PubMed ID: 20166670

  • 1. Enhanced cell surface polymer grafting in concentrated and nonreactive aqueous polymer solutions.
    Rossi NA, Constantinescu I, Brooks DE, Scott MD, Kizhakkedathu JN.
    J Am Chem Soc; 2010 Mar 17; 132(10):3423-30. PubMed ID: 20166670
    [Abstract] [Full Text] [Related]

  • 2. Influence of polymer architecture on antigens camouflage, CD47 protection and complement mediated lysis of surface grafted red blood cells.
    Chapanian R, Constantinescu I, Rossi NA, Medvedev N, Brooks DE, Scott MD, Kizhakkedathu JN.
    Biomaterials; 2012 Nov 17; 33(31):7871-83. PubMed ID: 22840223
    [Abstract] [Full Text] [Related]

  • 3. Red blood cell membrane grafting of multi-functional hyperbranched polyglycerols.
    Rossi NA, Constantinescu I, Kainthan RK, Brooks DE, Scott MD, Kizhakkedathu JN.
    Biomaterials; 2010 May 17; 31(14):4167-78. PubMed ID: 20172604
    [Abstract] [Full Text] [Related]

  • 4. Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting.
    Liu SX, Kim JT, Kim S.
    J Food Sci; 2008 Apr 17; 73(3):E143-50. PubMed ID: 18387109
    [Abstract] [Full Text] [Related]

  • 5. Immune complex binding by immunocamouflaged [poly(ethylene glycol)-grafted] erythrocytes.
    Bradley AJ, Scott MD.
    Am J Hematol; 2007 Nov 17; 82(11):970-5. PubMed ID: 17654505
    [Abstract] [Full Text] [Related]

  • 6. Adsorption of amphiphilic hyperbranched polyglycerol derivatives onto human red blood cells.
    Liu Z, Janzen J, Brooks DE.
    Biomaterials; 2010 Apr 17; 31(12):3364-73. PubMed ID: 20122720
    [Abstract] [Full Text] [Related]

  • 7. The potential utility of methoxypoly(ethylene glycol)-mediated prevention of rhesus blood group antigen RhD recognition in transfusion medicine.
    Wang D, Toyofuku WM, Scott MD.
    Biomaterials; 2012 Apr 17; 33(10):3002-12. PubMed ID: 22264524
    [Abstract] [Full Text] [Related]

  • 8. Studies on the aggregation behaviour of pegylated human red blood cells with the Zeta sedimentation technique.
    Jovtchev S, Stoeff S, Arnold K, Zschörnig O.
    Clin Hemorheol Microcirc; 2008 Apr 17; 39(1-4):229-33. PubMed ID: 18503130
    [Abstract] [Full Text] [Related]

  • 9. Supported cell mimetic monolayers and their interaction with blood.
    Kaladhar K, Sharma CP.
    Langmuir; 2004 Dec 07; 20(25):11115-22. PubMed ID: 15568865
    [Abstract] [Full Text] [Related]

  • 10. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility.
    Balakrishnan B, Kumar DS, Yoshida Y, Jayakrishnan A.
    Biomaterials; 2005 Jun 07; 26(17):3495-502. PubMed ID: 15621239
    [Abstract] [Full Text] [Related]

  • 11. Separation and purification of methoxypoly(ethylene glycol) grafted red blood cells via two-phase partitioning.
    Bradley AJ, Scott MD.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Jul 25; 807(1):163-8. PubMed ID: 15177175
    [Abstract] [Full Text] [Related]

  • 12. Comparative efficacy of blood cell immunocamouflage by membrane grafting of methoxypoly(ethylene glycol) and polyethyloxazoline.
    Kyluik-Price DL, Li L, Scott MD.
    Biomaterials; 2014 Jan 25; 35(1):412-22. PubMed ID: 24074839
    [Abstract] [Full Text] [Related]

  • 13. Surface decoration of red blood cells with maleimidophenyl-polyethylene glycol facilitated by thiolation with iminothiolane: an approach to mask A, B, and D antigens to generate universal red blood cells.
    Nacharaju P, Boctor FN, Manjula BN, Acharya SA.
    Transfusion; 2005 Mar 25; 45(3):374-83. PubMed ID: 15752155
    [Abstract] [Full Text] [Related]

  • 14. Chitosan based surfactant polymers designed to improve blood compatibility on biomaterials.
    Sagnella S, Mai-Ngam K.
    Colloids Surf B Biointerfaces; 2005 May 10; 42(2):147-55. PubMed ID: 15833667
    [Abstract] [Full Text] [Related]

  • 15. A method to optimize PEG-coating of red blood cells.
    Hashemi-Najafabadi S, Vasheghani-Farahani E, Shojaosadati SA, Rasaee MJ, Armstrong JK, Moin M, Pourpak Z.
    Bioconjug Chem; 2006 May 10; 17(5):1288-93. PubMed ID: 16984140
    [Abstract] [Full Text] [Related]

  • 16. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D, Franzka S, Ulbricht M.
    Langmuir; 2005 Sep 13; 21(19):8774-84. PubMed ID: 16142960
    [Abstract] [Full Text] [Related]

  • 17. Noncovalent cell surface engineering with cationic graft copolymers.
    Wilson JT, Krishnamurthy VR, Cui W, Qu Z, Chaikof EL.
    J Am Chem Soc; 2009 Dec 30; 131(51):18228-9. PubMed ID: 19961173
    [Abstract] [Full Text] [Related]

  • 18. The interaction of macromolecular solutions with macromolecular monolayers adsorbed on a hydrophobic surface.
    Fromageot HP, Groves JN, Sears AR, Brown JF.
    J Biomed Mater Res; 1976 May 30; 10(3):455-69. PubMed ID: 5457
    [Abstract] [Full Text] [Related]

  • 19. Surface modification of SU-8 for enhanced biofunctionality and nonfouling properties.
    Tao SL, Popat KC, Norman JJ, Desai TA.
    Langmuir; 2008 Mar 18; 24(6):2631-6. PubMed ID: 18275232
    [Abstract] [Full Text] [Related]

  • 20. Modification of pLL/DNA complexes with a multivalent hydrophilic polymer permits folate-mediated targeting in vitro and prolonged plasma circulation in vivo.
    Ward CM, Pechar M, Oupicky D, Ulbrich K, Seymour LW.
    J Gene Med; 2002 Mar 18; 4(5):536-47. PubMed ID: 12221647
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.