These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
173 related items for PubMed ID: 20167186
1. An intensive insulinotherapy mobile phone application built on artificial intelligence techniques. Curran K, Nichols E, Xie E, Harper R. J Diabetes Sci Technol; 2010 Jan 01; 4(1):209-20. PubMed ID: 20167186 [Abstract] [Full Text] [Related]
2. Mobile health applications to assist patients with diabetes: lessons learned and design implications. Årsand E, Frøisland DH, Skrøvseth SO, Chomutare T, Tatara N, Hartvigsen G, Tufano JT. J Diabetes Sci Technol; 2012 Sep 01; 6(5):1197-206. PubMed ID: 23063047 [Abstract] [Full Text] [Related]
4. A real-time, mobile phone-based telemedicine system to support young adults with type 1 diabetes. Farmer A, Gibson O, Hayton P, Bryden K, Dudley C, Neil A, Tarassenko L. Inform Prim Care; 2005 Sep 01; 13(3):171-7. PubMed ID: 16259856 [Abstract] [Full Text] [Related]
5. The Mobile Insulin Titration Intervention (MITI) for Insulin Adjustment in an Urban, Low-Income Population: Randomized Controlled Trial. Levy N, Moynihan V, Nilo A, Singer K, Bernik LS, Etiebet MA, Fang Y, Cho J, Natarajan S. J Med Internet Res; 2015 Jul 17; 17(7):e180. PubMed ID: 26187303 [Abstract] [Full Text] [Related]
6. Mobile phone-based pattern recognition and data analysis for patients with type 1 diabetes. Skrøvseth SO, Årsand E, Godtliebsen F, Hartvigsen G. Diabetes Technol Ther; 2012 Dec 17; 14(12):1098-104. PubMed ID: 23035775 [Abstract] [Full Text] [Related]
9. Sociodemographic and clinical correlates of key outcomes from a Mobile Insulin Titration Intervention (MITI) for medically underserved patients. Langford AT, Wang B, Orzeck-Byrnes NA, Aidasani SR, Hu L, Applegate M, Moloney DN, Sevick MA, Rogers ES, Levy NK. Patient Educ Couns; 2019 Mar 17; 102(3):520-527. PubMed ID: 30293934 [Abstract] [Full Text] [Related]
10. Using mobile phone text messages to improve insulin injection technique and glycaemic control in patients with diabetes mellitus: a multi-centre study in Turkey. Celik S, Cosansu G, Erdogan S, Kahraman A, Isik S, Bayrak G, Bektas B, Olgun N. J Clin Nurs; 2015 Jun 17; 24(11-12):1525-33. PubMed ID: 25422134 [Abstract] [Full Text] [Related]
11. Carbohydrate Estimation by a Mobile Phone-Based System Versus Self-Estimations of Individuals With Type 1 Diabetes Mellitus: A Comparative Study. Rhyner D, Loher H, Dehais J, Anthimopoulos M, Shevchik S, Botwey RH, Duke D, Stettler C, Diem P, Mougiakakou S. J Med Internet Res; 2016 May 11; 18(5):e101. PubMed ID: 27170498 [Abstract] [Full Text] [Related]
12. Implementation of a WAP-based telemedicine system for patient monitoring. Hung K, Zhang YT. IEEE Trans Inf Technol Biomed; 2003 Jun 11; 7(2):101-7. PubMed ID: 12834165 [Abstract] [Full Text] [Related]
13. Gquest: modeling patient questionnaires and administering them through a mobile platform application. Lanzola G, Ginardi MG, Mazzanti A, Quaglini S. Comput Methods Programs Biomed; 2014 Nov 11; 117(2):277-91. PubMed ID: 25154645 [Abstract] [Full Text] [Related]
15. User Experience of an Innovative Mobile Health Program to Assist in Insulin Dose Adjustment: Outcomes of a Proof-Of-Concept Trial. Ding H, Fatehi F, Russell AW, Karunanithi M, Menon A, Bird D, Gray LC. Telemed J E Health; 2018 Jul 11; 24(7):536-543. PubMed ID: 29261476 [Abstract] [Full Text] [Related]
16. A randomized controlled trial comparing a telemedicine therapeutic intervention with routine care in adults with type 1 diabetes mellitus treated by insulin pumps. Yaron M, Sher B, Sorek D, Shomer M, Levek N, Schiller T, Gaspar M, Frumkin Ben-David R, Mazor-Aronovitch K, Tish E, Shapira Y, Pinhas-Hamiel O. Acta Diabetol; 2019 Jun 11; 56(6):667-673. PubMed ID: 30783823 [Abstract] [Full Text] [Related]
17. Blood Culture Testing via a Mobile App That Uses a Mobile Phone Camera: A Feasibility Study. Lee G, Lee Y, Chong YP, Jang S, Kim MN, Kim JH, Kim WS, Lee JH. J Med Internet Res; 2016 Oct 26; 18(10):e282. PubMed ID: 27784649 [Abstract] [Full Text] [Related]
18. A Fully Automated Conversational Artificial Intelligence for Weight Loss: Longitudinal Observational Study Among Overweight and Obese Adults. Stein N, Brooks K. JMIR Diabetes; 2017 Nov 01; 2(2):e28. PubMed ID: 30291087 [Abstract] [Full Text] [Related]
19. Functionalities and input methods for recording food intake: a systematic review. Rusin M, Arsand E, Hartvigsen G. Int J Med Inform; 2013 Aug 01; 82(8):653-64. PubMed ID: 23415822 [Abstract] [Full Text] [Related]