These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


92 related items for PubMed ID: 20169532

  • 21. Decline in titin content in rat skeletal muscle after denervation.
    Chen SP, Sheu JR, Lin AC, Hsiao G, Fong TH.
    Muscle Nerve; 2005 Dec; 32(6):798-807. PubMed ID: 16175625
    [Abstract] [Full Text] [Related]

  • 22. S-glutathionylation of metallothioneins by nitrosative/oxidative stress.
    Casadei M, Persichini T, Polticelli F, Musci G, Colasanti M.
    Exp Gerontol; 2008 May; 43(5):415-22. PubMed ID: 18166286
    [Abstract] [Full Text] [Related]

  • 23. Influence of fibroblast growth factor (bFGF) and insulin-like growth factor (IGF-I) on cytoskeletal and contractile structures and on atrial natriuretic factor (ANF) expression in adult rat ventricular cardiomyocytes in culture.
    Harder BA, Schaub MC, Eppenberger HM, Eppenberger-Eberhardt M.
    J Mol Cell Cardiol; 1996 Jan; 28(1):19-31. PubMed ID: 8745211
    [Abstract] [Full Text] [Related]

  • 24. Myosin as a potential redox-sensor: an in vitro study.
    Passarelli C, Petrini S, Pastore A, Bonetto V, Sale P, Gaeta LM, Tozzi G, Bertini E, Canepari M, Rossi R, Piemonte F.
    J Muscle Res Cell Motil; 2008 Jan; 29(2-5):119-26. PubMed ID: 18780150
    [Abstract] [Full Text] [Related]

  • 25. Post-translational incorporation of actin into myofibrils in vitro: evidence for isoform specificity.
    Peng I, Fischman DA.
    Cell Motil Cytoskeleton; 1991 Jan; 20(2):158-68. PubMed ID: 1751968
    [Abstract] [Full Text] [Related]

  • 26. Changes in myofibrils and cytoskeleton of neonatal hamster myocardial cells in culture: an immunofluorescence study.
    Zhang C, Osinska HE, Lemanski SL, Huang XP, Lemanski LF.
    Tissue Cell; 2005 Dec; 37(6):435-45. PubMed ID: 16165178
    [Abstract] [Full Text] [Related]

  • 27. Contractile protein dynamics of myofibrils in paired adult rat cardiomyocytes.
    Imanaka-Yoshida K, Sanger JM, Sanger JW.
    Cell Motil Cytoskeleton; 1993 Dec; 26(4):301-12. PubMed ID: 8299146
    [Abstract] [Full Text] [Related]

  • 28. The role of signalling molecules on actin glutathionylation and protein carbonylation induced by cadmium in haemocytes of mussel Mytilus galloprovincialis (Lmk).
    Dailianis S, Patetsini E, Kaloyianni M.
    J Exp Biol; 2009 Nov; 212(Pt 22):3612-20. PubMed ID: 19880721
    [Abstract] [Full Text] [Related]

  • 29. Methods for analysis of protein glutathionylation and their application to photosynthetic organisms.
    Gao XH, Bedhomme M, Veyel D, Zaffagnini M, Lemaire SD.
    Mol Plant; 2009 Mar; 2(2):218-35. PubMed ID: 19825609
    [Abstract] [Full Text] [Related]

  • 30. Functional dissection of nebulette demonstrates actin binding of nebulin-like repeats and Z-line targeting of SH3 and linker domains.
    Moncman CL, Wang K.
    Cell Motil Cytoskeleton; 1999 Mar; 44(1):1-22. PubMed ID: 10470015
    [Abstract] [Full Text] [Related]

  • 31. Reversible glutathionylation regulates actin polymerization in A431 cells.
    Wang J, Boja ES, Tan W, Tekle E, Fales HM, English S, Mieyal JJ, Chock PB.
    J Biol Chem; 2001 Dec 21; 276(51):47763-6. PubMed ID: 11684673
    [Abstract] [Full Text] [Related]

  • 32. Intracellular distribution of glutathionylated proteins in cultured dermal fibroblasts by immunofluorescence.
    Petrini S, D'Oria V, Piemonte F.
    Methods Mol Biol; 2015 Dec 21; 1208():395-408. PubMed ID: 25323522
    [Abstract] [Full Text] [Related]

  • 33. Dynamics of actin in cardiac myofibrils and fibroblast stress fibers.
    Shimada Y, Suzuki H, Konno A.
    Cell Struct Funct; 1997 Feb 21; 22(1):59-64. PubMed ID: 9113391
    [Abstract] [Full Text] [Related]

  • 34. Reduced positive feedback regulation between myosin crossbridge and cardiac troponin C in fast skeletal myofibrils.
    Morimoto S, Ohtsuki I.
    J Biochem; 1996 Apr 21; 119(4):737-42. PubMed ID: 8743577
    [Abstract] [Full Text] [Related]

  • 35. Accessibility of myofilament cysteines and effects on ATPase depend on the activation state during exposure to oxidants.
    Gross SM, Lehman SL.
    PLoS One; 2013 Apr 21; 8(7):e69110. PubMed ID: 23894416
    [Abstract] [Full Text] [Related]

  • 36. Effect of protein glutathionylation on neuronal cytoskeleton: a potential link to neurodegeneration.
    Carletti B, Passarelli C, Sparaco M, Tozzi G, Pastore A, Bertini E, Piemonte F.
    Neuroscience; 2011 Sep 29; 192():285-94. PubMed ID: 21704675
    [Abstract] [Full Text] [Related]

  • 37. Proteomic Identification of Protein Glutathionylation in Cardiomyocytes.
    VanHecke GC, Abeywardana MY, Ahn YH.
    J Proteome Res; 2019 Apr 05; 18(4):1806-1818. PubMed ID: 30831029
    [Abstract] [Full Text] [Related]

  • 38. Novel control of cardiac myofilament response to calcium by S-glutathionylation at specific sites of myosin binding protein C.
    Patel BG, Wilder T, Solaro RJ.
    Front Physiol; 2013 Apr 05; 4():336. PubMed ID: 24312057
    [Abstract] [Full Text] [Related]

  • 39. Protein glutathionylation in cellular compartments: a constitutive redox signal.
    Petrini S, Passarelli C, Pastore A, Tozzi G, Coccetti M, Colucci M, Bianchi M, Carrozzo R, Bertini E, Piemonte F.
    Redox Rep; 2012 Apr 05; 17(2):63-71. PubMed ID: 22564349
    [Abstract] [Full Text] [Related]

  • 40. To the heart of myofibril assembly.
    Gregorio CC, Antin PB.
    Trends Cell Biol; 2000 Sep 05; 10(9):355-62. PubMed ID: 10932092
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 5.